Sound absorption and compressive property of PU foam‐filled composite sandwiches: Effects of needle‐punched fabric structure, porous structure, and fabric‐foam interface

The flexible polyurethane (PU) foam‐filled composite sandwiches are constructed using three types of needle‐punched fabrics (upper layer), PU foam (core layer), and nylon (bottom layer). Different contents of deionized water were used to adjust the pore size and bulk density of PU foam by free‐foami...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymers for advanced technologies 2020-03, Vol.31 (3), p.451-460
Hauptverfasser: Li, Ting‐Ting, Zhang, Xiao, Wang, Hongyang, Dai, Wenna, Huang, Shih‐Yu, Shiu, Bing‐Chiuan, Lou, Ching‐Wen, Lin, Jia‐Horng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 460
container_issue 3
container_start_page 451
container_title Polymers for advanced technologies
container_volume 31
creator Li, Ting‐Ting
Zhang, Xiao
Wang, Hongyang
Dai, Wenna
Huang, Shih‐Yu
Shiu, Bing‐Chiuan
Lou, Ching‐Wen
Lin, Jia‐Horng
description The flexible polyurethane (PU) foam‐filled composite sandwiches are constructed using three types of needle‐punched fabrics (upper layer), PU foam (core layer), and nylon (bottom layer). Different contents of deionized water were used to adjust the pore size and bulk density of PU foam by free‐foaming. Effects of needle‐punched fabric components, cell structure, and fabric‐foam interface on sound absorption and compressive property of the composite sandwiches were investigated. Fabric‐foam interface contributes to improve high‐frequency sound absorption efficiency. When containing 0.5 wt% water in the core and nylon‐glass grid needle‐punched composite fabric (NPUN‐G) in the upper face, the composite sandwiches exhibited optimal sound absorption of 0.78 at low frequency of 450 Hz, and optimal compressive strength of 14.4 kPa. Combination of needle‐punched composite fabric improved the sound absorption coefficient and compressive strength, as high as 223% and 121%, respectively, compared with pure PU foam. This study provided an important basis for the preparation of high‐strength composite sandwiches with low‐frequency sound absorption.
doi_str_mv 10.1002/pat.4781
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2351946986</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2351946986</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3301-5281a9540104eadc01c5bf1dc5054ffe933d0f690a7dceee54106dedf145de993</originalsourceid><addsrcrecordid>eNp1kU1OwzAQhSMEEqUgcQRLbFiQYidxErOrUPmRKlGJdh259li4SuNgO1TdcQRuwp04CQ5hwYaVf-Z782b0ouic4AnBOLluuZ9kRUkOohHBjMWEluSwv2dJXJCsOI5OnNtgHGqsGEWfz6ZrJOJrZ2zrtWkQD09htq0F5_QboNaaFqzfI6PQYoWU4duv9w-l6xoG0DjtAbmg22nxAu4GzZQC4V2vaABkDUHQdk0oSqT42mqBnLed8J2FK9Qaazr396cfYeB6p2CIdOPBKi7gNDpSvHZw9nuOo9XdbHn7EM-f7h9vp_NYpCkmMU1KwhnNcNgbuBSYCLpWRAqKaRamY2kqscoZ5oUUAEAzgnMJUpGMSmAsHUcXQ9-w_msHzlcb09kmWFZJSgnLclbmgbocKGGNcxZU1Vq95XZfEVz1cVQhjqqPI6DxgO50Dft_uWoxXf7w375Uk2c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2351946986</pqid></control><display><type>article</type><title>Sound absorption and compressive property of PU foam‐filled composite sandwiches: Effects of needle‐punched fabric structure, porous structure, and fabric‐foam interface</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Li, Ting‐Ting ; Zhang, Xiao ; Wang, Hongyang ; Dai, Wenna ; Huang, Shih‐Yu ; Shiu, Bing‐Chiuan ; Lou, Ching‐Wen ; Lin, Jia‐Horng</creator><creatorcontrib>Li, Ting‐Ting ; Zhang, Xiao ; Wang, Hongyang ; Dai, Wenna ; Huang, Shih‐Yu ; Shiu, Bing‐Chiuan ; Lou, Ching‐Wen ; Lin, Jia‐Horng</creatorcontrib><description>The flexible polyurethane (PU) foam‐filled composite sandwiches are constructed using three types of needle‐punched fabrics (upper layer), PU foam (core layer), and nylon (bottom layer). Different contents of deionized water were used to adjust the pore size and bulk density of PU foam by free‐foaming. Effects of needle‐punched fabric components, cell structure, and fabric‐foam interface on sound absorption and compressive property of the composite sandwiches were investigated. Fabric‐foam interface contributes to improve high‐frequency sound absorption efficiency. When containing 0.5 wt% water in the core and nylon‐glass grid needle‐punched composite fabric (NPUN‐G) in the upper face, the composite sandwiches exhibited optimal sound absorption of 0.78 at low frequency of 450 Hz, and optimal compressive strength of 14.4 kPa. Combination of needle‐punched composite fabric improved the sound absorption coefficient and compressive strength, as high as 223% and 121%, respectively, compared with pure PU foam. This study provided an important basis for the preparation of high‐strength composite sandwiches with low‐frequency sound absorption.</description><identifier>ISSN: 1042-7147</identifier><identifier>EISSN: 1099-1581</identifier><identifier>DOI: 10.1002/pat.4781</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Absorptivity ; acoustic absorption ; Bulk density ; composite sandwiches ; compressive property ; Compressive strength ; Deionization ; Fabric structures ; fabric‐foam interface ; Foaming ; Noise control ; polyurethane (PU) foam ; Polyurethane foam ; Pore size ; Porosity ; Skeletal composites ; Sound ; Sound transmission ; Textile composites</subject><ispartof>Polymers for advanced technologies, 2020-03, Vol.31 (3), p.451-460</ispartof><rights>2019 John Wiley &amp; Sons, Ltd.</rights><rights>2020 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3301-5281a9540104eadc01c5bf1dc5054ffe933d0f690a7dceee54106dedf145de993</citedby><cites>FETCH-LOGICAL-c3301-5281a9540104eadc01c5bf1dc5054ffe933d0f690a7dceee54106dedf145de993</cites><orcidid>0000-0002-6913-8986</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpat.4781$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpat.4781$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Li, Ting‐Ting</creatorcontrib><creatorcontrib>Zhang, Xiao</creatorcontrib><creatorcontrib>Wang, Hongyang</creatorcontrib><creatorcontrib>Dai, Wenna</creatorcontrib><creatorcontrib>Huang, Shih‐Yu</creatorcontrib><creatorcontrib>Shiu, Bing‐Chiuan</creatorcontrib><creatorcontrib>Lou, Ching‐Wen</creatorcontrib><creatorcontrib>Lin, Jia‐Horng</creatorcontrib><title>Sound absorption and compressive property of PU foam‐filled composite sandwiches: Effects of needle‐punched fabric structure, porous structure, and fabric‐foam interface</title><title>Polymers for advanced technologies</title><description>The flexible polyurethane (PU) foam‐filled composite sandwiches are constructed using three types of needle‐punched fabrics (upper layer), PU foam (core layer), and nylon (bottom layer). Different contents of deionized water were used to adjust the pore size and bulk density of PU foam by free‐foaming. Effects of needle‐punched fabric components, cell structure, and fabric‐foam interface on sound absorption and compressive property of the composite sandwiches were investigated. Fabric‐foam interface contributes to improve high‐frequency sound absorption efficiency. When containing 0.5 wt% water in the core and nylon‐glass grid needle‐punched composite fabric (NPUN‐G) in the upper face, the composite sandwiches exhibited optimal sound absorption of 0.78 at low frequency of 450 Hz, and optimal compressive strength of 14.4 kPa. Combination of needle‐punched composite fabric improved the sound absorption coefficient and compressive strength, as high as 223% and 121%, respectively, compared with pure PU foam. This study provided an important basis for the preparation of high‐strength composite sandwiches with low‐frequency sound absorption.</description><subject>Absorptivity</subject><subject>acoustic absorption</subject><subject>Bulk density</subject><subject>composite sandwiches</subject><subject>compressive property</subject><subject>Compressive strength</subject><subject>Deionization</subject><subject>Fabric structures</subject><subject>fabric‐foam interface</subject><subject>Foaming</subject><subject>Noise control</subject><subject>polyurethane (PU) foam</subject><subject>Polyurethane foam</subject><subject>Pore size</subject><subject>Porosity</subject><subject>Skeletal composites</subject><subject>Sound</subject><subject>Sound transmission</subject><subject>Textile composites</subject><issn>1042-7147</issn><issn>1099-1581</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kU1OwzAQhSMEEqUgcQRLbFiQYidxErOrUPmRKlGJdh259li4SuNgO1TdcQRuwp04CQ5hwYaVf-Z782b0ouic4AnBOLluuZ9kRUkOohHBjMWEluSwv2dJXJCsOI5OnNtgHGqsGEWfz6ZrJOJrZ2zrtWkQD09htq0F5_QboNaaFqzfI6PQYoWU4duv9w-l6xoG0DjtAbmg22nxAu4GzZQC4V2vaABkDUHQdk0oSqT42mqBnLed8J2FK9Qaazr396cfYeB6p2CIdOPBKi7gNDpSvHZw9nuOo9XdbHn7EM-f7h9vp_NYpCkmMU1KwhnNcNgbuBSYCLpWRAqKaRamY2kqscoZ5oUUAEAzgnMJUpGMSmAsHUcXQ9-w_msHzlcb09kmWFZJSgnLclbmgbocKGGNcxZU1Vq95XZfEVz1cVQhjqqPI6DxgO50Dft_uWoxXf7w375Uk2c</recordid><startdate>202003</startdate><enddate>202003</enddate><creator>Li, Ting‐Ting</creator><creator>Zhang, Xiao</creator><creator>Wang, Hongyang</creator><creator>Dai, Wenna</creator><creator>Huang, Shih‐Yu</creator><creator>Shiu, Bing‐Chiuan</creator><creator>Lou, Ching‐Wen</creator><creator>Lin, Jia‐Horng</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-6913-8986</orcidid></search><sort><creationdate>202003</creationdate><title>Sound absorption and compressive property of PU foam‐filled composite sandwiches: Effects of needle‐punched fabric structure, porous structure, and fabric‐foam interface</title><author>Li, Ting‐Ting ; Zhang, Xiao ; Wang, Hongyang ; Dai, Wenna ; Huang, Shih‐Yu ; Shiu, Bing‐Chiuan ; Lou, Ching‐Wen ; Lin, Jia‐Horng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3301-5281a9540104eadc01c5bf1dc5054ffe933d0f690a7dceee54106dedf145de993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Absorptivity</topic><topic>acoustic absorption</topic><topic>Bulk density</topic><topic>composite sandwiches</topic><topic>compressive property</topic><topic>Compressive strength</topic><topic>Deionization</topic><topic>Fabric structures</topic><topic>fabric‐foam interface</topic><topic>Foaming</topic><topic>Noise control</topic><topic>polyurethane (PU) foam</topic><topic>Polyurethane foam</topic><topic>Pore size</topic><topic>Porosity</topic><topic>Skeletal composites</topic><topic>Sound</topic><topic>Sound transmission</topic><topic>Textile composites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Ting‐Ting</creatorcontrib><creatorcontrib>Zhang, Xiao</creatorcontrib><creatorcontrib>Wang, Hongyang</creatorcontrib><creatorcontrib>Dai, Wenna</creatorcontrib><creatorcontrib>Huang, Shih‐Yu</creatorcontrib><creatorcontrib>Shiu, Bing‐Chiuan</creatorcontrib><creatorcontrib>Lou, Ching‐Wen</creatorcontrib><creatorcontrib>Lin, Jia‐Horng</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Polymers for advanced technologies</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Ting‐Ting</au><au>Zhang, Xiao</au><au>Wang, Hongyang</au><au>Dai, Wenna</au><au>Huang, Shih‐Yu</au><au>Shiu, Bing‐Chiuan</au><au>Lou, Ching‐Wen</au><au>Lin, Jia‐Horng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sound absorption and compressive property of PU foam‐filled composite sandwiches: Effects of needle‐punched fabric structure, porous structure, and fabric‐foam interface</atitle><jtitle>Polymers for advanced technologies</jtitle><date>2020-03</date><risdate>2020</risdate><volume>31</volume><issue>3</issue><spage>451</spage><epage>460</epage><pages>451-460</pages><issn>1042-7147</issn><eissn>1099-1581</eissn><abstract>The flexible polyurethane (PU) foam‐filled composite sandwiches are constructed using three types of needle‐punched fabrics (upper layer), PU foam (core layer), and nylon (bottom layer). Different contents of deionized water were used to adjust the pore size and bulk density of PU foam by free‐foaming. Effects of needle‐punched fabric components, cell structure, and fabric‐foam interface on sound absorption and compressive property of the composite sandwiches were investigated. Fabric‐foam interface contributes to improve high‐frequency sound absorption efficiency. When containing 0.5 wt% water in the core and nylon‐glass grid needle‐punched composite fabric (NPUN‐G) in the upper face, the composite sandwiches exhibited optimal sound absorption of 0.78 at low frequency of 450 Hz, and optimal compressive strength of 14.4 kPa. Combination of needle‐punched composite fabric improved the sound absorption coefficient and compressive strength, as high as 223% and 121%, respectively, compared with pure PU foam. This study provided an important basis for the preparation of high‐strength composite sandwiches with low‐frequency sound absorption.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/pat.4781</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-6913-8986</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1042-7147
ispartof Polymers for advanced technologies, 2020-03, Vol.31 (3), p.451-460
issn 1042-7147
1099-1581
language eng
recordid cdi_proquest_journals_2351946986
source Wiley Online Library Journals Frontfile Complete
subjects Absorptivity
acoustic absorption
Bulk density
composite sandwiches
compressive property
Compressive strength
Deionization
Fabric structures
fabric‐foam interface
Foaming
Noise control
polyurethane (PU) foam
Polyurethane foam
Pore size
Porosity
Skeletal composites
Sound
Sound transmission
Textile composites
title Sound absorption and compressive property of PU foam‐filled composite sandwiches: Effects of needle‐punched fabric structure, porous structure, and fabric‐foam interface
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T15%3A02%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sound%20absorption%20and%20compressive%20property%20of%20PU%20foam%E2%80%90filled%20composite%20sandwiches:%20Effects%20of%20needle%E2%80%90punched%20fabric%20structure,%20porous%20structure,%20and%20fabric%E2%80%90foam%20interface&rft.jtitle=Polymers%20for%20advanced%20technologies&rft.au=Li,%20Ting%E2%80%90Ting&rft.date=2020-03&rft.volume=31&rft.issue=3&rft.spage=451&rft.epage=460&rft.pages=451-460&rft.issn=1042-7147&rft.eissn=1099-1581&rft_id=info:doi/10.1002/pat.4781&rft_dat=%3Cproquest_cross%3E2351946986%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2351946986&rft_id=info:pmid/&rfr_iscdi=true