Geosocial Location Classification: Associating Type to Places Based on Geotagged Social-Media Posts

Associating type to locations can be used to enrich maps and can serve a plethora of geospatial applications. An automatic method to do so could make the process less expensive in terms of human labor, and faster to react to changes. In this paper we study the problem of Geosocial Location Classific...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2020-09
Hauptverfasser: Kravi, Elad, Kimelfeld, Benny, Kanza, Yaron, Reichart, Roi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Kravi, Elad
Kimelfeld, Benny
Kanza, Yaron
Reichart, Roi
description Associating type to locations can be used to enrich maps and can serve a plethora of geospatial applications. An automatic method to do so could make the process less expensive in terms of human labor, and faster to react to changes. In this paper we study the problem of Geosocial Location Classification, where the type of a site, e.g., a building, is discovered based on social-media posts. Our goal is to correctly associate a set of messages posted in a small radius around a given location with the corresponding location type, e.g., school, church, restaurant or museum. We explore two approaches to the problem: (a) a pipeline approach, where each message is first classified, and then the location associated with the message set is inferred from the individual message labels; and (b) a joint approach where the individual messages are simultaneously processed to yield the desired location type. We tested the two approaches over a dataset of geotagged tweets. Our results demonstrate the superiority of the joint approach. Moreover, we show that due to the unique structure of the problem, where weakly-related messages are jointly processed to yield a single final label, linear classifiers outperform deep neural network alternatives.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2351839930</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2351839930</sourcerecordid><originalsourceid>FETCH-proquest_journals_23518399303</originalsourceid><addsrcrecordid>eNqNjF0LgjAYhUcQJOV_eKFrYW5Z2l1JHxcFQt7LmFMmw5nvvOjfN6of0NXh4TznzEjAOI-jdMPYgoSIHaWUbXcsSXhA5EVZtFILAzcrhdO2h9wIRN3oL-7hgB_D6b6F8jUocBYKI6RCOApUNfiNv3GibT08Pm_RXdVaQGHR4YrMG2FQhb9ckvX5VObXaBjtc1Loqs5OY--rivEkTnmWccr_s96T1kVp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2351839930</pqid></control><display><type>article</type><title>Geosocial Location Classification: Associating Type to Places Based on Geotagged Social-Media Posts</title><source>Free E- Journals</source><creator>Kravi, Elad ; Kimelfeld, Benny ; Kanza, Yaron ; Reichart, Roi</creator><creatorcontrib>Kravi, Elad ; Kimelfeld, Benny ; Kanza, Yaron ; Reichart, Roi</creatorcontrib><description>Associating type to locations can be used to enrich maps and can serve a plethora of geospatial applications. An automatic method to do so could make the process less expensive in terms of human labor, and faster to react to changes. In this paper we study the problem of Geosocial Location Classification, where the type of a site, e.g., a building, is discovered based on social-media posts. Our goal is to correctly associate a set of messages posted in a small radius around a given location with the corresponding location type, e.g., school, church, restaurant or museum. We explore two approaches to the problem: (a) a pipeline approach, where each message is first classified, and then the location associated with the message set is inferred from the individual message labels; and (b) a joint approach where the individual messages are simultaneously processed to yield the desired location type. We tested the two approaches over a dataset of geotagged tweets. Our results demonstrate the superiority of the joint approach. Moreover, we show that due to the unique structure of the problem, where weakly-related messages are jointly processed to yield a single final label, linear classifiers outperform deep neural network alternatives.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Classification ; Digital media ; Messages ; Neural networks</subject><ispartof>arXiv.org, 2020-09</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>777,781</link.rule.ids></links><search><creatorcontrib>Kravi, Elad</creatorcontrib><creatorcontrib>Kimelfeld, Benny</creatorcontrib><creatorcontrib>Kanza, Yaron</creatorcontrib><creatorcontrib>Reichart, Roi</creatorcontrib><title>Geosocial Location Classification: Associating Type to Places Based on Geotagged Social-Media Posts</title><title>arXiv.org</title><description>Associating type to locations can be used to enrich maps and can serve a plethora of geospatial applications. An automatic method to do so could make the process less expensive in terms of human labor, and faster to react to changes. In this paper we study the problem of Geosocial Location Classification, where the type of a site, e.g., a building, is discovered based on social-media posts. Our goal is to correctly associate a set of messages posted in a small radius around a given location with the corresponding location type, e.g., school, church, restaurant or museum. We explore two approaches to the problem: (a) a pipeline approach, where each message is first classified, and then the location associated with the message set is inferred from the individual message labels; and (b) a joint approach where the individual messages are simultaneously processed to yield the desired location type. We tested the two approaches over a dataset of geotagged tweets. Our results demonstrate the superiority of the joint approach. Moreover, we show that due to the unique structure of the problem, where weakly-related messages are jointly processed to yield a single final label, linear classifiers outperform deep neural network alternatives.</description><subject>Classification</subject><subject>Digital media</subject><subject>Messages</subject><subject>Neural networks</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjF0LgjAYhUcQJOV_eKFrYW5Z2l1JHxcFQt7LmFMmw5nvvOjfN6of0NXh4TznzEjAOI-jdMPYgoSIHaWUbXcsSXhA5EVZtFILAzcrhdO2h9wIRN3oL-7hgB_D6b6F8jUocBYKI6RCOApUNfiNv3GibT08Pm_RXdVaQGHR4YrMG2FQhb9ckvX5VObXaBjtc1Loqs5OY--rivEkTnmWccr_s96T1kVp</recordid><startdate>20200918</startdate><enddate>20200918</enddate><creator>Kravi, Elad</creator><creator>Kimelfeld, Benny</creator><creator>Kanza, Yaron</creator><creator>Reichart, Roi</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200918</creationdate><title>Geosocial Location Classification: Associating Type to Places Based on Geotagged Social-Media Posts</title><author>Kravi, Elad ; Kimelfeld, Benny ; Kanza, Yaron ; Reichart, Roi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_23518399303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Classification</topic><topic>Digital media</topic><topic>Messages</topic><topic>Neural networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Kravi, Elad</creatorcontrib><creatorcontrib>Kimelfeld, Benny</creatorcontrib><creatorcontrib>Kanza, Yaron</creatorcontrib><creatorcontrib>Reichart, Roi</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kravi, Elad</au><au>Kimelfeld, Benny</au><au>Kanza, Yaron</au><au>Reichart, Roi</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Geosocial Location Classification: Associating Type to Places Based on Geotagged Social-Media Posts</atitle><jtitle>arXiv.org</jtitle><date>2020-09-18</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>Associating type to locations can be used to enrich maps and can serve a plethora of geospatial applications. An automatic method to do so could make the process less expensive in terms of human labor, and faster to react to changes. In this paper we study the problem of Geosocial Location Classification, where the type of a site, e.g., a building, is discovered based on social-media posts. Our goal is to correctly associate a set of messages posted in a small radius around a given location with the corresponding location type, e.g., school, church, restaurant or museum. We explore two approaches to the problem: (a) a pipeline approach, where each message is first classified, and then the location associated with the message set is inferred from the individual message labels; and (b) a joint approach where the individual messages are simultaneously processed to yield the desired location type. We tested the two approaches over a dataset of geotagged tweets. Our results demonstrate the superiority of the joint approach. Moreover, we show that due to the unique structure of the problem, where weakly-related messages are jointly processed to yield a single final label, linear classifiers outperform deep neural network alternatives.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2020-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_2351839930
source Free E- Journals
subjects Classification
Digital media
Messages
Neural networks
title Geosocial Location Classification: Associating Type to Places Based on Geotagged Social-Media Posts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T16%3A56%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Geosocial%20Location%20Classification:%20Associating%20Type%20to%20Places%20Based%20on%20Geotagged%20Social-Media%20Posts&rft.jtitle=arXiv.org&rft.au=Kravi,%20Elad&rft.date=2020-09-18&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2351839930%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2351839930&rft_id=info:pmid/&rfr_iscdi=true