Four Principles of Explainable AI as Applied to Biometrics and Facial Forensic Algorithms

Traditionally, researchers in automatic face recognition and biometric technologies have focused on developing accurate algorithms. With this technology being integrated into operational systems, engineers and scientists are being asked, do these systems meet societal norms? The origin of this line...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2020-02
Hauptverfasser: Phillips, P Jonathon, Przybocki, Mark
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Phillips, P Jonathon
Przybocki, Mark
description Traditionally, researchers in automatic face recognition and biometric technologies have focused on developing accurate algorithms. With this technology being integrated into operational systems, engineers and scientists are being asked, do these systems meet societal norms? The origin of this line of inquiry is `trust' of artificial intelligence (AI) systems. In this paper, we concentrate on adapting explainable AI to face recognition and biometrics, and we present four principles of explainable AI to face recognition and biometrics. The principles are illustrated by \(\it{four}\) case studies, which show the challenges and issues in developing algorithms that can produce explanations.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2351269506</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2351269506</sourcerecordid><originalsourceid>FETCH-proquest_journals_23512695063</originalsourceid><addsrcrecordid>eNqNjbEKwjAUAIMgWLT_8MC50Cam6lilRTcHF6cS21RfSZOY14Kfr4Mf4HTDHdyMRVyILNltOF-wmKhP05TnWy6liNitclOAS0DboDeawHVQvr1RaNXdaCjOoAgK7w3qFkYHB3SDHgM2BMq2UKkGlYHKBW0JGyjMwwUcnwOt2LxThnT845Ktq_J6PCU-uNekaaz779p-Vc2FzHi-l2ku_qs-ZkVBcg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2351269506</pqid></control><display><type>article</type><title>Four Principles of Explainable AI as Applied to Biometrics and Facial Forensic Algorithms</title><source>Freely Accessible Journals</source><creator>Phillips, P Jonathon ; Przybocki, Mark</creator><creatorcontrib>Phillips, P Jonathon ; Przybocki, Mark</creatorcontrib><description>Traditionally, researchers in automatic face recognition and biometric technologies have focused on developing accurate algorithms. With this technology being integrated into operational systems, engineers and scientists are being asked, do these systems meet societal norms? The origin of this line of inquiry is `trust' of artificial intelligence (AI) systems. In this paper, we concentrate on adapting explainable AI to face recognition and biometrics, and we present four principles of explainable AI to face recognition and biometrics. The principles are illustrated by \(\it{four}\) case studies, which show the challenges and issues in developing algorithms that can produce explanations.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Biometric recognition systems ; Biometrics ; Explainable artificial intelligence ; Face recognition ; Norms ; Principles</subject><ispartof>arXiv.org, 2020-02</ispartof><rights>2020. This work is published under http://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Phillips, P Jonathon</creatorcontrib><creatorcontrib>Przybocki, Mark</creatorcontrib><title>Four Principles of Explainable AI as Applied to Biometrics and Facial Forensic Algorithms</title><title>arXiv.org</title><description>Traditionally, researchers in automatic face recognition and biometric technologies have focused on developing accurate algorithms. With this technology being integrated into operational systems, engineers and scientists are being asked, do these systems meet societal norms? The origin of this line of inquiry is `trust' of artificial intelligence (AI) systems. In this paper, we concentrate on adapting explainable AI to face recognition and biometrics, and we present four principles of explainable AI to face recognition and biometrics. The principles are illustrated by \(\it{four}\) case studies, which show the challenges and issues in developing algorithms that can produce explanations.</description><subject>Algorithms</subject><subject>Biometric recognition systems</subject><subject>Biometrics</subject><subject>Explainable artificial intelligence</subject><subject>Face recognition</subject><subject>Norms</subject><subject>Principles</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjbEKwjAUAIMgWLT_8MC50Cam6lilRTcHF6cS21RfSZOY14Kfr4Mf4HTDHdyMRVyILNltOF-wmKhP05TnWy6liNitclOAS0DboDeawHVQvr1RaNXdaCjOoAgK7w3qFkYHB3SDHgM2BMq2UKkGlYHKBW0JGyjMwwUcnwOt2LxThnT845Ktq_J6PCU-uNekaaz779p-Vc2FzHi-l2ku_qs-ZkVBcg</recordid><startdate>20200203</startdate><enddate>20200203</enddate><creator>Phillips, P Jonathon</creator><creator>Przybocki, Mark</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200203</creationdate><title>Four Principles of Explainable AI as Applied to Biometrics and Facial Forensic Algorithms</title><author>Phillips, P Jonathon ; Przybocki, Mark</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_23512695063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Biometric recognition systems</topic><topic>Biometrics</topic><topic>Explainable artificial intelligence</topic><topic>Face recognition</topic><topic>Norms</topic><topic>Principles</topic><toplevel>online_resources</toplevel><creatorcontrib>Phillips, P Jonathon</creatorcontrib><creatorcontrib>Przybocki, Mark</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Phillips, P Jonathon</au><au>Przybocki, Mark</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Four Principles of Explainable AI as Applied to Biometrics and Facial Forensic Algorithms</atitle><jtitle>arXiv.org</jtitle><date>2020-02-03</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>Traditionally, researchers in automatic face recognition and biometric technologies have focused on developing accurate algorithms. With this technology being integrated into operational systems, engineers and scientists are being asked, do these systems meet societal norms? The origin of this line of inquiry is `trust' of artificial intelligence (AI) systems. In this paper, we concentrate on adapting explainable AI to face recognition and biometrics, and we present four principles of explainable AI to face recognition and biometrics. The principles are illustrated by \(\it{four}\) case studies, which show the challenges and issues in developing algorithms that can produce explanations.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2020-02
issn 2331-8422
language eng
recordid cdi_proquest_journals_2351269506
source Freely Accessible Journals
subjects Algorithms
Biometric recognition systems
Biometrics
Explainable artificial intelligence
Face recognition
Norms
Principles
title Four Principles of Explainable AI as Applied to Biometrics and Facial Forensic Algorithms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T08%3A27%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Four%20Principles%20of%20Explainable%20AI%20as%20Applied%20to%20Biometrics%20and%20Facial%20Forensic%20Algorithms&rft.jtitle=arXiv.org&rft.au=Phillips,%20P%20Jonathon&rft.date=2020-02-03&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2351269506%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2351269506&rft_id=info:pmid/&rfr_iscdi=true