Midlatitude atmospheric transient eddy feedbacks influenced ENSO-associated wintertime Pacific teleconnection patterns in two PDO phases
The El Nino-Southern Oscillation (ENSO)-associated wintertime atmospheric teleconnection patterns in two Pacific decadal oscillation (PDO) phases are investigated using ERA-20C reanalysis data for 1950–2010. A strengthened ENSO-associated Pacific-North American (PNA) teleconnection pattern presents...
Gespeichert in:
Veröffentlicht in: | Climate dynamics 2020-02, Vol.54 (3-4), p.2577-2595 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2595 |
---|---|
container_issue | 3-4 |
container_start_page | 2577 |
container_title | Climate dynamics |
container_volume | 54 |
creator | Chu, Cuijiao Hu, Haibo Yang, Xiu-Qun Yang, Dejian |
description | The El Nino-Southern Oscillation (ENSO)-associated wintertime atmospheric teleconnection patterns in two Pacific decadal oscillation (PDO) phases are investigated using ERA-20C reanalysis data for 1950–2010. A strengthened ENSO-associated Pacific-North American (PNA) teleconnection pattern presents in PDO positive phase, while a West Pacific (WP) pattern over Northwestern Pacific and a squeezed PNA pattern coexist when ENSO occurs in PDO negative phase. The dynamical role of atmospheric transient eddy feedbacks to the teleconnection patterns are highlighted in the present study. When ENSO occurs in PDO positive phase, the uniform strengthened westerly jet anomalies downstream of the climatological main body of jet accompany with energetic transient eddy anomalies over Northeastern Pacific. The transient eddy feedbacks largely enhance and favor the strengthened PNA pattern. When ENSO occurs in PDO negative phase, the strengthened westerly jet anomalies appear to separate into two parts, one locating north of the climatological main body of jet and the other at the downstream. The accompanied transient eddy anomalies also split into two parts. Under such conditions, the transient eddy feedbacks are limited over Northeastern Pacific and favor a weak PNA pattern. However, the transient eddy anomalies over Northwestern Pacific strengthen, and the feedbacks also strengthen and largely contribute to the WP pattern. Moreover, the transient eddy anomalies over Northwestern Pacific seem to be anchored along the anomalously poleward strengthened oceanic subarctic frontal zone (SAFZ) in PDO negative phase. The enhanced atmospheric baroclinicity anomalies, coupled with the strengthened SAFZ, energize atmospheric transient eddy anomalies, and work as the potential maintenance in shaping the WP pattern. |
doi_str_mv | 10.1007/s00382-020-05134-4 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2351105580</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A613526833</galeid><sourcerecordid>A613526833</sourcerecordid><originalsourceid>FETCH-LOGICAL-c467t-7b149fbac3760fd2ae381440c8a6b2710138740c7b988033461ebb513e815fde3</originalsourceid><addsrcrecordid>eNp9kU1vEzEQhi0EEiHwBzhZQkLisK299n7kWJUWKrWkonC2vN7ZxGVjB49Xpf-An82ERYJckA_WjJ53vl7GXktxIoVoTlEI1ZaFKEUhKql0oZ-whdSKUu1KP2ULsVKiaKqmes5eIN4LIXXdlAv288b3o80-Tz1wm3cR91tI3vGcbEAPIXPo-0c-APSddd-Q-zCMEwQHPb_4dLcuLGJ03maKH3zIkLLfAb-1zg-HMjCCiyGAyz4GvreZiHCowvND5Lfv13y_tQj4kj0b7Ijw6s-_ZF8vL76cfyyu1x-uzs-uC0cD56LppF4NNIlqajH0pQXVSq2Fa23dlY0UUrUNhU23aluhlK4ldB2dBFpZDT2oJXsz192n-H0CzOY-TilQS1OqSkpRVaRbspOZ2tgRDK0c6R6OXg87T_vA4Cl_VktVlXWrFAneHQmIyfAjb-yEaK7uPh-zb_9ht2DHvMU4TocL4TFYzqBLETHBYPbJ72x6NFKYg-9m9t2Q7-a370aTSM0iJDhsIP1d8D-qXzWEsBg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2351105580</pqid></control><display><type>article</type><title>Midlatitude atmospheric transient eddy feedbacks influenced ENSO-associated wintertime Pacific teleconnection patterns in two PDO phases</title><source>SpringerLink Journals - AutoHoldings</source><creator>Chu, Cuijiao ; Hu, Haibo ; Yang, Xiu-Qun ; Yang, Dejian</creator><creatorcontrib>Chu, Cuijiao ; Hu, Haibo ; Yang, Xiu-Qun ; Yang, Dejian</creatorcontrib><description>The El Nino-Southern Oscillation (ENSO)-associated wintertime atmospheric teleconnection patterns in two Pacific decadal oscillation (PDO) phases are investigated using ERA-20C reanalysis data for 1950–2010. A strengthened ENSO-associated Pacific-North American (PNA) teleconnection pattern presents in PDO positive phase, while a West Pacific (WP) pattern over Northwestern Pacific and a squeezed PNA pattern coexist when ENSO occurs in PDO negative phase. The dynamical role of atmospheric transient eddy feedbacks to the teleconnection patterns are highlighted in the present study. When ENSO occurs in PDO positive phase, the uniform strengthened westerly jet anomalies downstream of the climatological main body of jet accompany with energetic transient eddy anomalies over Northeastern Pacific. The transient eddy feedbacks largely enhance and favor the strengthened PNA pattern. When ENSO occurs in PDO negative phase, the strengthened westerly jet anomalies appear to separate into two parts, one locating north of the climatological main body of jet and the other at the downstream. The accompanied transient eddy anomalies also split into two parts. Under such conditions, the transient eddy feedbacks are limited over Northeastern Pacific and favor a weak PNA pattern. However, the transient eddy anomalies over Northwestern Pacific strengthen, and the feedbacks also strengthen and largely contribute to the WP pattern. Moreover, the transient eddy anomalies over Northwestern Pacific seem to be anchored along the anomalously poleward strengthened oceanic subarctic frontal zone (SAFZ) in PDO negative phase. The enhanced atmospheric baroclinicity anomalies, coupled with the strengthened SAFZ, energize atmospheric transient eddy anomalies, and work as the potential maintenance in shaping the WP pattern.</description><identifier>ISSN: 0930-7575</identifier><identifier>EISSN: 1432-0894</identifier><identifier>DOI: 10.1007/s00382-020-05134-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Activation ; Anomalies ; Baroclinic mode ; Baroclinity ; Climate cycles ; Climatology ; Downstream ; Earth and Environmental Science ; Earth Sciences ; El Nino ; El Nino phenomena ; El Nino-Southern Oscillation event ; Geophysics/Geodesy ; Locating ; Oceanography ; Pacific Decadal Oscillation ; Pacific-North American (PNA) pattern ; Southern Oscillation ; Teleconnection patterns ; Teleconnections ; Temperature ; Vortices</subject><ispartof>Climate dynamics, 2020-02, Vol.54 (3-4), p.2577-2595</ispartof><rights>The Author(s) 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Climate Dynamics is a copyright of Springer, (2020). All Rights Reserved. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c467t-7b149fbac3760fd2ae381440c8a6b2710138740c7b988033461ebb513e815fde3</citedby><cites>FETCH-LOGICAL-c467t-7b149fbac3760fd2ae381440c8a6b2710138740c7b988033461ebb513e815fde3</cites><orcidid>0000-0003-1457-9538</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00382-020-05134-4$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00382-020-05134-4$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Chu, Cuijiao</creatorcontrib><creatorcontrib>Hu, Haibo</creatorcontrib><creatorcontrib>Yang, Xiu-Qun</creatorcontrib><creatorcontrib>Yang, Dejian</creatorcontrib><title>Midlatitude atmospheric transient eddy feedbacks influenced ENSO-associated wintertime Pacific teleconnection patterns in two PDO phases</title><title>Climate dynamics</title><addtitle>Clim Dyn</addtitle><description>The El Nino-Southern Oscillation (ENSO)-associated wintertime atmospheric teleconnection patterns in two Pacific decadal oscillation (PDO) phases are investigated using ERA-20C reanalysis data for 1950–2010. A strengthened ENSO-associated Pacific-North American (PNA) teleconnection pattern presents in PDO positive phase, while a West Pacific (WP) pattern over Northwestern Pacific and a squeezed PNA pattern coexist when ENSO occurs in PDO negative phase. The dynamical role of atmospheric transient eddy feedbacks to the teleconnection patterns are highlighted in the present study. When ENSO occurs in PDO positive phase, the uniform strengthened westerly jet anomalies downstream of the climatological main body of jet accompany with energetic transient eddy anomalies over Northeastern Pacific. The transient eddy feedbacks largely enhance and favor the strengthened PNA pattern. When ENSO occurs in PDO negative phase, the strengthened westerly jet anomalies appear to separate into two parts, one locating north of the climatological main body of jet and the other at the downstream. The accompanied transient eddy anomalies also split into two parts. Under such conditions, the transient eddy feedbacks are limited over Northeastern Pacific and favor a weak PNA pattern. However, the transient eddy anomalies over Northwestern Pacific strengthen, and the feedbacks also strengthen and largely contribute to the WP pattern. Moreover, the transient eddy anomalies over Northwestern Pacific seem to be anchored along the anomalously poleward strengthened oceanic subarctic frontal zone (SAFZ) in PDO negative phase. The enhanced atmospheric baroclinicity anomalies, coupled with the strengthened SAFZ, energize atmospheric transient eddy anomalies, and work as the potential maintenance in shaping the WP pattern.</description><subject>Activation</subject><subject>Anomalies</subject><subject>Baroclinic mode</subject><subject>Baroclinity</subject><subject>Climate cycles</subject><subject>Climatology</subject><subject>Downstream</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>El Nino</subject><subject>El Nino phenomena</subject><subject>El Nino-Southern Oscillation event</subject><subject>Geophysics/Geodesy</subject><subject>Locating</subject><subject>Oceanography</subject><subject>Pacific Decadal Oscillation</subject><subject>Pacific-North American (PNA) pattern</subject><subject>Southern Oscillation</subject><subject>Teleconnection patterns</subject><subject>Teleconnections</subject><subject>Temperature</subject><subject>Vortices</subject><issn>0930-7575</issn><issn>1432-0894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU1vEzEQhi0EEiHwBzhZQkLisK299n7kWJUWKrWkonC2vN7ZxGVjB49Xpf-An82ERYJckA_WjJ53vl7GXktxIoVoTlEI1ZaFKEUhKql0oZ-whdSKUu1KP2ULsVKiaKqmes5eIN4LIXXdlAv288b3o80-Tz1wm3cR91tI3vGcbEAPIXPo-0c-APSddd-Q-zCMEwQHPb_4dLcuLGJ03maKH3zIkLLfAb-1zg-HMjCCiyGAyz4GvreZiHCowvND5Lfv13y_tQj4kj0b7Ijw6s-_ZF8vL76cfyyu1x-uzs-uC0cD56LppF4NNIlqajH0pQXVSq2Fa23dlY0UUrUNhU23aluhlK4ldB2dBFpZDT2oJXsz192n-H0CzOY-TilQS1OqSkpRVaRbspOZ2tgRDK0c6R6OXg87T_vA4Cl_VktVlXWrFAneHQmIyfAjb-yEaK7uPh-zb_9ht2DHvMU4TocL4TFYzqBLETHBYPbJ72x6NFKYg-9m9t2Q7-a370aTSM0iJDhsIP1d8D-qXzWEsBg</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Chu, Cuijiao</creator><creator>Hu, Haibo</creator><creator>Yang, Xiu-Qun</creator><creator>Yang, Dejian</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M1Q</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-1457-9538</orcidid></search><sort><creationdate>20200201</creationdate><title>Midlatitude atmospheric transient eddy feedbacks influenced ENSO-associated wintertime Pacific teleconnection patterns in two PDO phases</title><author>Chu, Cuijiao ; Hu, Haibo ; Yang, Xiu-Qun ; Yang, Dejian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c467t-7b149fbac3760fd2ae381440c8a6b2710138740c7b988033461ebb513e815fde3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Activation</topic><topic>Anomalies</topic><topic>Baroclinic mode</topic><topic>Baroclinity</topic><topic>Climate cycles</topic><topic>Climatology</topic><topic>Downstream</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>El Nino</topic><topic>El Nino phenomena</topic><topic>El Nino-Southern Oscillation event</topic><topic>Geophysics/Geodesy</topic><topic>Locating</topic><topic>Oceanography</topic><topic>Pacific Decadal Oscillation</topic><topic>Pacific-North American (PNA) pattern</topic><topic>Southern Oscillation</topic><topic>Teleconnection patterns</topic><topic>Teleconnections</topic><topic>Temperature</topic><topic>Vortices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chu, Cuijiao</creatorcontrib><creatorcontrib>Hu, Haibo</creatorcontrib><creatorcontrib>Yang, Xiu-Qun</creatorcontrib><creatorcontrib>Yang, Dejian</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Military Database</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Climate dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chu, Cuijiao</au><au>Hu, Haibo</au><au>Yang, Xiu-Qun</au><au>Yang, Dejian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Midlatitude atmospheric transient eddy feedbacks influenced ENSO-associated wintertime Pacific teleconnection patterns in two PDO phases</atitle><jtitle>Climate dynamics</jtitle><stitle>Clim Dyn</stitle><date>2020-02-01</date><risdate>2020</risdate><volume>54</volume><issue>3-4</issue><spage>2577</spage><epage>2595</epage><pages>2577-2595</pages><issn>0930-7575</issn><eissn>1432-0894</eissn><abstract>The El Nino-Southern Oscillation (ENSO)-associated wintertime atmospheric teleconnection patterns in two Pacific decadal oscillation (PDO) phases are investigated using ERA-20C reanalysis data for 1950–2010. A strengthened ENSO-associated Pacific-North American (PNA) teleconnection pattern presents in PDO positive phase, while a West Pacific (WP) pattern over Northwestern Pacific and a squeezed PNA pattern coexist when ENSO occurs in PDO negative phase. The dynamical role of atmospheric transient eddy feedbacks to the teleconnection patterns are highlighted in the present study. When ENSO occurs in PDO positive phase, the uniform strengthened westerly jet anomalies downstream of the climatological main body of jet accompany with energetic transient eddy anomalies over Northeastern Pacific. The transient eddy feedbacks largely enhance and favor the strengthened PNA pattern. When ENSO occurs in PDO negative phase, the strengthened westerly jet anomalies appear to separate into two parts, one locating north of the climatological main body of jet and the other at the downstream. The accompanied transient eddy anomalies also split into two parts. Under such conditions, the transient eddy feedbacks are limited over Northeastern Pacific and favor a weak PNA pattern. However, the transient eddy anomalies over Northwestern Pacific strengthen, and the feedbacks also strengthen and largely contribute to the WP pattern. Moreover, the transient eddy anomalies over Northwestern Pacific seem to be anchored along the anomalously poleward strengthened oceanic subarctic frontal zone (SAFZ) in PDO negative phase. The enhanced atmospheric baroclinicity anomalies, coupled with the strengthened SAFZ, energize atmospheric transient eddy anomalies, and work as the potential maintenance in shaping the WP pattern.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00382-020-05134-4</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-1457-9538</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0930-7575 |
ispartof | Climate dynamics, 2020-02, Vol.54 (3-4), p.2577-2595 |
issn | 0930-7575 1432-0894 |
language | eng |
recordid | cdi_proquest_journals_2351105580 |
source | SpringerLink Journals - AutoHoldings |
subjects | Activation Anomalies Baroclinic mode Baroclinity Climate cycles Climatology Downstream Earth and Environmental Science Earth Sciences El Nino El Nino phenomena El Nino-Southern Oscillation event Geophysics/Geodesy Locating Oceanography Pacific Decadal Oscillation Pacific-North American (PNA) pattern Southern Oscillation Teleconnection patterns Teleconnections Temperature Vortices |
title | Midlatitude atmospheric transient eddy feedbacks influenced ENSO-associated wintertime Pacific teleconnection patterns in two PDO phases |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T23%3A13%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Midlatitude%20atmospheric%20transient%20eddy%20feedbacks%20influenced%20ENSO-associated%20wintertime%20Pacific%20teleconnection%20patterns%20in%20two%20PDO%20phases&rft.jtitle=Climate%20dynamics&rft.au=Chu,%20Cuijiao&rft.date=2020-02-01&rft.volume=54&rft.issue=3-4&rft.spage=2577&rft.epage=2595&rft.pages=2577-2595&rft.issn=0930-7575&rft.eissn=1432-0894&rft_id=info:doi/10.1007/s00382-020-05134-4&rft_dat=%3Cgale_proqu%3EA613526833%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2351105580&rft_id=info:pmid/&rft_galeid=A613526833&rfr_iscdi=true |