Enhanced production of tanshinone IIA in endophytic fungi Emericella foeniculicola by genome shuffling
Context: Tanshinone IIA, commercially produced from Salvia miltiorrhiza Bunge (C.Y.Wu) (Labiatae), has various biological benefits. Currently, this compound is mainly extracted from plants. However, because of the long growth cycle and the unstable quality of plants, the market demands can barely be...
Gespeichert in:
Veröffentlicht in: | Pharmaceutical biology 2018-01, Vol.56 (1), p.357-362 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 362 |
---|---|
container_issue | 1 |
container_start_page | 357 |
container_title | Pharmaceutical biology |
container_volume | 56 |
creator | Zhang, Pengyu Lee, Yiting Wei, Xiying Wu, Jinlan Liu, Qingmei Wan, Shanning |
description | Context: Tanshinone IIA, commercially produced from Salvia miltiorrhiza Bunge (C.Y.Wu) (Labiatae), has various biological benefits. Currently, this compound is mainly extracted from plants. However, because of the long growth cycle and the unstable quality of plants, the market demands can barely be satisfied.
Objective: The genomic shuffling technology is applied to screen the high-yield tanshinone IIA strain, which could be used to replace the plant S. miltiorrhiza for the production of tanshinone IIA. The change in the production of tanshinone IIA is clarified by comparing it with the original strain.
Materials and methods: Tanshinone IIA was extracted from Strains cells, which was prepared through 0.5 mL protoplast samples by using hypertonic solution I from two different strains. Then, it was analyzed by high-performance liquid chromatography at 30 °C and UV 270 nm. Total DNA from the strains was extracted for RAPD amplification and electrophoresis to isolate the product.
Results: In this study, a high-yield tanshinone IIA strain F-3.4 was screened and the yield of tanshinone IIA was increased by 387.56 ± 0.02 mg/g, 11.07 times higher than that of the original strain TR21.
Discussion: This study shows that the genetic basis of high-yield strains is achieved through genome shuffling, which proves that genome shuffling can shorten the breeding cycle and improve the mutagenesis efficiency in obtaining the strains with good traits and it is a useful method for the molecular breeding of industrial strains. |
doi_str_mv | 10.1080/13880209.2018.1481108 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2351041418</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_5d1965e8496a454b98879bc2f1f3db47</doaj_id><sourcerecordid>2351041418</sourcerecordid><originalsourceid>FETCH-LOGICAL-c595t-5ed26cd61f30742eb47e96e5c5402f94d43293d52c6b6148656e4b04eb82b73f3</originalsourceid><addsrcrecordid>eNp9kstu1DAUhiMEoqXwCCBLbNhk8D3JBlFVA4xUiQ2sLcc-zniU2IOdFM3b4-lMK8qCle3j7_znor-q3hK8IrjFHwlrW0xxt6KYtCvCW1LCz6pL0nBeC0Lk83IvTH2ELqpXOe8wxoIx8bK6YJhKiRtyWbl12OpgwKJ9inYxs48BRYdmHfLWhxgAbTbXyAcEwcb99jB7g9wSBo_WEyRvYBw1chGCN8voTSyv_oAGCHEClLeLc6MPw-vqhdNjhjfn86r6-WX94-Zbffv96-bm-rY2ohNzLcBSaawkjuGGU-h5A50EYQTH1HXcckY7ZgU1spdlZikk8B5z6FvaN8yxq2pz0rVR79Q--Umng4raq_tATIPSqYwwghKWdFJAyzupueB917ZN1xvqSnFbChetTyet_dJPYA2EOenxiejTn-C3aoh3SpKGcEmLwIezQIq_Fsizmny-X1iAuGRFOes4lZi3BX3_D7qLSwplVYoyQTAnnBwpcaJMijkncI_NEKyOrlAPrlBHV6izK0reu78necx6sEEBPp8AH1xMk_4d02jVrA9jTC4Vf_is2P9r_AGHx8aJ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2351041418</pqid></control><display><type>article</type><title>Enhanced production of tanshinone IIA in endophytic fungi Emericella foeniculicola by genome shuffling</title><source>Taylor & Francis Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Zhang, Pengyu ; Lee, Yiting ; Wei, Xiying ; Wu, Jinlan ; Liu, Qingmei ; Wan, Shanning</creator><creatorcontrib>Zhang, Pengyu ; Lee, Yiting ; Wei, Xiying ; Wu, Jinlan ; Liu, Qingmei ; Wan, Shanning</creatorcontrib><description>Context: Tanshinone IIA, commercially produced from Salvia miltiorrhiza Bunge (C.Y.Wu) (Labiatae), has various biological benefits. Currently, this compound is mainly extracted from plants. However, because of the long growth cycle and the unstable quality of plants, the market demands can barely be satisfied.
Objective: The genomic shuffling technology is applied to screen the high-yield tanshinone IIA strain, which could be used to replace the plant S. miltiorrhiza for the production of tanshinone IIA. The change in the production of tanshinone IIA is clarified by comparing it with the original strain.
Materials and methods: Tanshinone IIA was extracted from Strains cells, which was prepared through 0.5 mL protoplast samples by using hypertonic solution I from two different strains. Then, it was analyzed by high-performance liquid chromatography at 30 °C and UV 270 nm. Total DNA from the strains was extracted for RAPD amplification and electrophoresis to isolate the product.
Results: In this study, a high-yield tanshinone IIA strain F-3.4 was screened and the yield of tanshinone IIA was increased by 387.56 ± 0.02 mg/g, 11.07 times higher than that of the original strain TR21.
Discussion: This study shows that the genetic basis of high-yield strains is achieved through genome shuffling, which proves that genome shuffling can shorten the breeding cycle and improve the mutagenesis efficiency in obtaining the strains with good traits and it is a useful method for the molecular breeding of industrial strains.</description><identifier>ISSN: 1388-0209</identifier><identifier>ISSN: 1744-5116</identifier><identifier>EISSN: 1744-5116</identifier><identifier>DOI: 10.1080/13880209.2018.1481108</identifier><identifier>PMID: 30266071</identifier><language>eng</language><publisher>England: Taylor & Francis</publisher><subject>Acids ; Breeding ; Chromatography ; Diterpenes, Abietane - biosynthesis ; Diterpenes, Abietane - genetics ; Diterpenes, Abietane - isolation & purification ; DNA ; DNA shuffling ; DNA Shuffling - methods ; electrophoresis ; Emericella ; Emericella - genetics ; Emericella - metabolism ; Endophytes ; Endophytes - genetics ; Endophytes - metabolism ; Fungi ; Gene recombination ; Genomes ; genomics ; Herbal medicine ; High-performance liquid chromatography ; Industrial strains ; Life sciences ; metabolic production ; Metabolites ; Microorganisms ; Mutagenesis ; Mutation - physiology ; protoplasts ; random amplified polymorphic DNA technique ; RAPD ; Salvia miltiorrhiza ; strain breeding</subject><ispartof>Pharmaceutical biology, 2018-01, Vol.56 (1), p.357-362</ispartof><rights>2018 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2018</rights><rights>2018 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2018 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2018 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c595t-5ed26cd61f30742eb47e96e5c5402f94d43293d52c6b6148656e4b04eb82b73f3</citedby><cites>FETCH-LOGICAL-c595t-5ed26cd61f30742eb47e96e5c5402f94d43293d52c6b6148656e4b04eb82b73f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6171462/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6171462/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,27479,27901,27902,53766,53768,59116,59117</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30266071$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Pengyu</creatorcontrib><creatorcontrib>Lee, Yiting</creatorcontrib><creatorcontrib>Wei, Xiying</creatorcontrib><creatorcontrib>Wu, Jinlan</creatorcontrib><creatorcontrib>Liu, Qingmei</creatorcontrib><creatorcontrib>Wan, Shanning</creatorcontrib><title>Enhanced production of tanshinone IIA in endophytic fungi Emericella foeniculicola by genome shuffling</title><title>Pharmaceutical biology</title><addtitle>Pharm Biol</addtitle><description>Context: Tanshinone IIA, commercially produced from Salvia miltiorrhiza Bunge (C.Y.Wu) (Labiatae), has various biological benefits. Currently, this compound is mainly extracted from plants. However, because of the long growth cycle and the unstable quality of plants, the market demands can barely be satisfied.
Objective: The genomic shuffling technology is applied to screen the high-yield tanshinone IIA strain, which could be used to replace the plant S. miltiorrhiza for the production of tanshinone IIA. The change in the production of tanshinone IIA is clarified by comparing it with the original strain.
Materials and methods: Tanshinone IIA was extracted from Strains cells, which was prepared through 0.5 mL protoplast samples by using hypertonic solution I from two different strains. Then, it was analyzed by high-performance liquid chromatography at 30 °C and UV 270 nm. Total DNA from the strains was extracted for RAPD amplification and electrophoresis to isolate the product.
Results: In this study, a high-yield tanshinone IIA strain F-3.4 was screened and the yield of tanshinone IIA was increased by 387.56 ± 0.02 mg/g, 11.07 times higher than that of the original strain TR21.
Discussion: This study shows that the genetic basis of high-yield strains is achieved through genome shuffling, which proves that genome shuffling can shorten the breeding cycle and improve the mutagenesis efficiency in obtaining the strains with good traits and it is a useful method for the molecular breeding of industrial strains.</description><subject>Acids</subject><subject>Breeding</subject><subject>Chromatography</subject><subject>Diterpenes, Abietane - biosynthesis</subject><subject>Diterpenes, Abietane - genetics</subject><subject>Diterpenes, Abietane - isolation & purification</subject><subject>DNA</subject><subject>DNA shuffling</subject><subject>DNA Shuffling - methods</subject><subject>electrophoresis</subject><subject>Emericella</subject><subject>Emericella - genetics</subject><subject>Emericella - metabolism</subject><subject>Endophytes</subject><subject>Endophytes - genetics</subject><subject>Endophytes - metabolism</subject><subject>Fungi</subject><subject>Gene recombination</subject><subject>Genomes</subject><subject>genomics</subject><subject>Herbal medicine</subject><subject>High-performance liquid chromatography</subject><subject>Industrial strains</subject><subject>Life sciences</subject><subject>metabolic production</subject><subject>Metabolites</subject><subject>Microorganisms</subject><subject>Mutagenesis</subject><subject>Mutation - physiology</subject><subject>protoplasts</subject><subject>random amplified polymorphic DNA technique</subject><subject>RAPD</subject><subject>Salvia miltiorrhiza</subject><subject>strain breeding</subject><issn>1388-0209</issn><issn>1744-5116</issn><issn>1744-5116</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNp9kstu1DAUhiMEoqXwCCBLbNhk8D3JBlFVA4xUiQ2sLcc-zniU2IOdFM3b4-lMK8qCle3j7_znor-q3hK8IrjFHwlrW0xxt6KYtCvCW1LCz6pL0nBeC0Lk83IvTH2ELqpXOe8wxoIx8bK6YJhKiRtyWbl12OpgwKJ9inYxs48BRYdmHfLWhxgAbTbXyAcEwcb99jB7g9wSBo_WEyRvYBw1chGCN8voTSyv_oAGCHEClLeLc6MPw-vqhdNjhjfn86r6-WX94-Zbffv96-bm-rY2ohNzLcBSaawkjuGGU-h5A50EYQTH1HXcckY7ZgU1spdlZikk8B5z6FvaN8yxq2pz0rVR79Q--Umng4raq_tATIPSqYwwghKWdFJAyzupueB917ZN1xvqSnFbChetTyet_dJPYA2EOenxiejTn-C3aoh3SpKGcEmLwIezQIq_Fsizmny-X1iAuGRFOes4lZi3BX3_D7qLSwplVYoyQTAnnBwpcaJMijkncI_NEKyOrlAPrlBHV6izK0reu78necx6sEEBPp8AH1xMk_4d02jVrA9jTC4Vf_is2P9r_AGHx8aJ</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Zhang, Pengyu</creator><creator>Lee, Yiting</creator><creator>Wei, Xiying</creator><creator>Wu, Jinlan</creator><creator>Liu, Qingmei</creator><creator>Wan, Shanning</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><general>Taylor & Francis Group</general><scope>0YH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20180101</creationdate><title>Enhanced production of tanshinone IIA in endophytic fungi Emericella foeniculicola by genome shuffling</title><author>Zhang, Pengyu ; Lee, Yiting ; Wei, Xiying ; Wu, Jinlan ; Liu, Qingmei ; Wan, Shanning</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c595t-5ed26cd61f30742eb47e96e5c5402f94d43293d52c6b6148656e4b04eb82b73f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Acids</topic><topic>Breeding</topic><topic>Chromatography</topic><topic>Diterpenes, Abietane - biosynthesis</topic><topic>Diterpenes, Abietane - genetics</topic><topic>Diterpenes, Abietane - isolation & purification</topic><topic>DNA</topic><topic>DNA shuffling</topic><topic>DNA Shuffling - methods</topic><topic>electrophoresis</topic><topic>Emericella</topic><topic>Emericella - genetics</topic><topic>Emericella - metabolism</topic><topic>Endophytes</topic><topic>Endophytes - genetics</topic><topic>Endophytes - metabolism</topic><topic>Fungi</topic><topic>Gene recombination</topic><topic>Genomes</topic><topic>genomics</topic><topic>Herbal medicine</topic><topic>High-performance liquid chromatography</topic><topic>Industrial strains</topic><topic>Life sciences</topic><topic>metabolic production</topic><topic>Metabolites</topic><topic>Microorganisms</topic><topic>Mutagenesis</topic><topic>Mutation - physiology</topic><topic>protoplasts</topic><topic>random amplified polymorphic DNA technique</topic><topic>RAPD</topic><topic>Salvia miltiorrhiza</topic><topic>strain breeding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Pengyu</creatorcontrib><creatorcontrib>Lee, Yiting</creatorcontrib><creatorcontrib>Wei, Xiying</creatorcontrib><creatorcontrib>Wu, Jinlan</creatorcontrib><creatorcontrib>Liu, Qingmei</creatorcontrib><creatorcontrib>Wan, Shanning</creatorcontrib><collection>Taylor & Francis Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Pharmaceutical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Pengyu</au><au>Lee, Yiting</au><au>Wei, Xiying</au><au>Wu, Jinlan</au><au>Liu, Qingmei</au><au>Wan, Shanning</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced production of tanshinone IIA in endophytic fungi Emericella foeniculicola by genome shuffling</atitle><jtitle>Pharmaceutical biology</jtitle><addtitle>Pharm Biol</addtitle><date>2018-01-01</date><risdate>2018</risdate><volume>56</volume><issue>1</issue><spage>357</spage><epage>362</epage><pages>357-362</pages><issn>1388-0209</issn><issn>1744-5116</issn><eissn>1744-5116</eissn><abstract>Context: Tanshinone IIA, commercially produced from Salvia miltiorrhiza Bunge (C.Y.Wu) (Labiatae), has various biological benefits. Currently, this compound is mainly extracted from plants. However, because of the long growth cycle and the unstable quality of plants, the market demands can barely be satisfied.
Objective: The genomic shuffling technology is applied to screen the high-yield tanshinone IIA strain, which could be used to replace the plant S. miltiorrhiza for the production of tanshinone IIA. The change in the production of tanshinone IIA is clarified by comparing it with the original strain.
Materials and methods: Tanshinone IIA was extracted from Strains cells, which was prepared through 0.5 mL protoplast samples by using hypertonic solution I from two different strains. Then, it was analyzed by high-performance liquid chromatography at 30 °C and UV 270 nm. Total DNA from the strains was extracted for RAPD amplification and electrophoresis to isolate the product.
Results: In this study, a high-yield tanshinone IIA strain F-3.4 was screened and the yield of tanshinone IIA was increased by 387.56 ± 0.02 mg/g, 11.07 times higher than that of the original strain TR21.
Discussion: This study shows that the genetic basis of high-yield strains is achieved through genome shuffling, which proves that genome shuffling can shorten the breeding cycle and improve the mutagenesis efficiency in obtaining the strains with good traits and it is a useful method for the molecular breeding of industrial strains.</abstract><cop>England</cop><pub>Taylor & Francis</pub><pmid>30266071</pmid><doi>10.1080/13880209.2018.1481108</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1388-0209 |
ispartof | Pharmaceutical biology, 2018-01, Vol.56 (1), p.357-362 |
issn | 1388-0209 1744-5116 1744-5116 |
language | eng |
recordid | cdi_proquest_journals_2351041418 |
source | Taylor & Francis Open Access; MEDLINE; DOAJ Directory of Open Access Journals; PubMed Central; Alma/SFX Local Collection |
subjects | Acids Breeding Chromatography Diterpenes, Abietane - biosynthesis Diterpenes, Abietane - genetics Diterpenes, Abietane - isolation & purification DNA DNA shuffling DNA Shuffling - methods electrophoresis Emericella Emericella - genetics Emericella - metabolism Endophytes Endophytes - genetics Endophytes - metabolism Fungi Gene recombination Genomes genomics Herbal medicine High-performance liquid chromatography Industrial strains Life sciences metabolic production Metabolites Microorganisms Mutagenesis Mutation - physiology protoplasts random amplified polymorphic DNA technique RAPD Salvia miltiorrhiza strain breeding |
title | Enhanced production of tanshinone IIA in endophytic fungi Emericella foeniculicola by genome shuffling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T08%3A17%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20production%20of%20tanshinone%20IIA%20in%20endophytic%20fungi%20Emericella%20foeniculicola%20by%20genome%20shuffling&rft.jtitle=Pharmaceutical%20biology&rft.au=Zhang,%20Pengyu&rft.date=2018-01-01&rft.volume=56&rft.issue=1&rft.spage=357&rft.epage=362&rft.pages=357-362&rft.issn=1388-0209&rft.eissn=1744-5116&rft_id=info:doi/10.1080/13880209.2018.1481108&rft_dat=%3Cproquest_cross%3E2351041418%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2351041418&rft_id=info:pmid/30266071&rft_doaj_id=oai_doaj_org_article_5d1965e8496a454b98879bc2f1f3db47&rfr_iscdi=true |