Enhanced production of tanshinone IIA in endophytic fungi Emericella foeniculicola by genome shuffling

Context: Tanshinone IIA, commercially produced from Salvia miltiorrhiza Bunge (C.Y.Wu) (Labiatae), has various biological benefits. Currently, this compound is mainly extracted from plants. However, because of the long growth cycle and the unstable quality of plants, the market demands can barely be...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pharmaceutical biology 2018-01, Vol.56 (1), p.357-362
Hauptverfasser: Zhang, Pengyu, Lee, Yiting, Wei, Xiying, Wu, Jinlan, Liu, Qingmei, Wan, Shanning
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 362
container_issue 1
container_start_page 357
container_title Pharmaceutical biology
container_volume 56
creator Zhang, Pengyu
Lee, Yiting
Wei, Xiying
Wu, Jinlan
Liu, Qingmei
Wan, Shanning
description Context: Tanshinone IIA, commercially produced from Salvia miltiorrhiza Bunge (C.Y.Wu) (Labiatae), has various biological benefits. Currently, this compound is mainly extracted from plants. However, because of the long growth cycle and the unstable quality of plants, the market demands can barely be satisfied. Objective: The genomic shuffling technology is applied to screen the high-yield tanshinone IIA strain, which could be used to replace the plant S. miltiorrhiza for the production of tanshinone IIA. The change in the production of tanshinone IIA is clarified by comparing it with the original strain. Materials and methods: Tanshinone IIA was extracted from Strains cells, which was prepared through 0.5 mL protoplast samples by using hypertonic solution I from two different strains. Then, it was analyzed by high-performance liquid chromatography at 30 °C and UV 270 nm. Total DNA from the strains was extracted for RAPD amplification and electrophoresis to isolate the product. Results: In this study, a high-yield tanshinone IIA strain F-3.4 was screened and the yield of tanshinone IIA was increased by 387.56 ± 0.02 mg/g, 11.07 times higher than that of the original strain TR21. Discussion: This study shows that the genetic basis of high-yield strains is achieved through genome shuffling, which proves that genome shuffling can shorten the breeding cycle and improve the mutagenesis efficiency in obtaining the strains with good traits and it is a useful method for the molecular breeding of industrial strains.
doi_str_mv 10.1080/13880209.2018.1481108
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2351041418</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_5d1965e8496a454b98879bc2f1f3db47</doaj_id><sourcerecordid>2351041418</sourcerecordid><originalsourceid>FETCH-LOGICAL-c595t-5ed26cd61f30742eb47e96e5c5402f94d43293d52c6b6148656e4b04eb82b73f3</originalsourceid><addsrcrecordid>eNp9kstu1DAUhiMEoqXwCCBLbNhk8D3JBlFVA4xUiQ2sLcc-zniU2IOdFM3b4-lMK8qCle3j7_znor-q3hK8IrjFHwlrW0xxt6KYtCvCW1LCz6pL0nBeC0Lk83IvTH2ELqpXOe8wxoIx8bK6YJhKiRtyWbl12OpgwKJ9inYxs48BRYdmHfLWhxgAbTbXyAcEwcb99jB7g9wSBo_WEyRvYBw1chGCN8voTSyv_oAGCHEClLeLc6MPw-vqhdNjhjfn86r6-WX94-Zbffv96-bm-rY2ohNzLcBSaawkjuGGU-h5A50EYQTH1HXcckY7ZgU1spdlZikk8B5z6FvaN8yxq2pz0rVR79Q--Umng4raq_tATIPSqYwwghKWdFJAyzupueB917ZN1xvqSnFbChetTyet_dJPYA2EOenxiejTn-C3aoh3SpKGcEmLwIezQIq_Fsizmny-X1iAuGRFOes4lZi3BX3_D7qLSwplVYoyQTAnnBwpcaJMijkncI_NEKyOrlAPrlBHV6izK0reu78necx6sEEBPp8AH1xMk_4d02jVrA9jTC4Vf_is2P9r_AGHx8aJ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2351041418</pqid></control><display><type>article</type><title>Enhanced production of tanshinone IIA in endophytic fungi Emericella foeniculicola by genome shuffling</title><source>Taylor &amp; Francis Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Zhang, Pengyu ; Lee, Yiting ; Wei, Xiying ; Wu, Jinlan ; Liu, Qingmei ; Wan, Shanning</creator><creatorcontrib>Zhang, Pengyu ; Lee, Yiting ; Wei, Xiying ; Wu, Jinlan ; Liu, Qingmei ; Wan, Shanning</creatorcontrib><description>Context: Tanshinone IIA, commercially produced from Salvia miltiorrhiza Bunge (C.Y.Wu) (Labiatae), has various biological benefits. Currently, this compound is mainly extracted from plants. However, because of the long growth cycle and the unstable quality of plants, the market demands can barely be satisfied. Objective: The genomic shuffling technology is applied to screen the high-yield tanshinone IIA strain, which could be used to replace the plant S. miltiorrhiza for the production of tanshinone IIA. The change in the production of tanshinone IIA is clarified by comparing it with the original strain. Materials and methods: Tanshinone IIA was extracted from Strains cells, which was prepared through 0.5 mL protoplast samples by using hypertonic solution I from two different strains. Then, it was analyzed by high-performance liquid chromatography at 30 °C and UV 270 nm. Total DNA from the strains was extracted for RAPD amplification and electrophoresis to isolate the product. Results: In this study, a high-yield tanshinone IIA strain F-3.4 was screened and the yield of tanshinone IIA was increased by 387.56 ± 0.02 mg/g, 11.07 times higher than that of the original strain TR21. Discussion: This study shows that the genetic basis of high-yield strains is achieved through genome shuffling, which proves that genome shuffling can shorten the breeding cycle and improve the mutagenesis efficiency in obtaining the strains with good traits and it is a useful method for the molecular breeding of industrial strains.</description><identifier>ISSN: 1388-0209</identifier><identifier>ISSN: 1744-5116</identifier><identifier>EISSN: 1744-5116</identifier><identifier>DOI: 10.1080/13880209.2018.1481108</identifier><identifier>PMID: 30266071</identifier><language>eng</language><publisher>England: Taylor &amp; Francis</publisher><subject>Acids ; Breeding ; Chromatography ; Diterpenes, Abietane - biosynthesis ; Diterpenes, Abietane - genetics ; Diterpenes, Abietane - isolation &amp; purification ; DNA ; DNA shuffling ; DNA Shuffling - methods ; electrophoresis ; Emericella ; Emericella - genetics ; Emericella - metabolism ; Endophytes ; Endophytes - genetics ; Endophytes - metabolism ; Fungi ; Gene recombination ; Genomes ; genomics ; Herbal medicine ; High-performance liquid chromatography ; Industrial strains ; Life sciences ; metabolic production ; Metabolites ; Microorganisms ; Mutagenesis ; Mutation - physiology ; protoplasts ; random amplified polymorphic DNA technique ; RAPD ; Salvia miltiorrhiza ; strain breeding</subject><ispartof>Pharmaceutical biology, 2018-01, Vol.56 (1), p.357-362</ispartof><rights>2018 The Author(s). Published by Informa UK Limited, trading as Taylor &amp; Francis Group. 2018</rights><rights>2018 The Author(s). Published by Informa UK Limited, trading as Taylor &amp; Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2018 The Author(s). Published by Informa UK Limited, trading as Taylor &amp; Francis Group. 2018 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c595t-5ed26cd61f30742eb47e96e5c5402f94d43293d52c6b6148656e4b04eb82b73f3</citedby><cites>FETCH-LOGICAL-c595t-5ed26cd61f30742eb47e96e5c5402f94d43293d52c6b6148656e4b04eb82b73f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6171462/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6171462/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,27479,27901,27902,53766,53768,59116,59117</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30266071$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Pengyu</creatorcontrib><creatorcontrib>Lee, Yiting</creatorcontrib><creatorcontrib>Wei, Xiying</creatorcontrib><creatorcontrib>Wu, Jinlan</creatorcontrib><creatorcontrib>Liu, Qingmei</creatorcontrib><creatorcontrib>Wan, Shanning</creatorcontrib><title>Enhanced production of tanshinone IIA in endophytic fungi Emericella foeniculicola by genome shuffling</title><title>Pharmaceutical biology</title><addtitle>Pharm Biol</addtitle><description>Context: Tanshinone IIA, commercially produced from Salvia miltiorrhiza Bunge (C.Y.Wu) (Labiatae), has various biological benefits. Currently, this compound is mainly extracted from plants. However, because of the long growth cycle and the unstable quality of plants, the market demands can barely be satisfied. Objective: The genomic shuffling technology is applied to screen the high-yield tanshinone IIA strain, which could be used to replace the plant S. miltiorrhiza for the production of tanshinone IIA. The change in the production of tanshinone IIA is clarified by comparing it with the original strain. Materials and methods: Tanshinone IIA was extracted from Strains cells, which was prepared through 0.5 mL protoplast samples by using hypertonic solution I from two different strains. Then, it was analyzed by high-performance liquid chromatography at 30 °C and UV 270 nm. Total DNA from the strains was extracted for RAPD amplification and electrophoresis to isolate the product. Results: In this study, a high-yield tanshinone IIA strain F-3.4 was screened and the yield of tanshinone IIA was increased by 387.56 ± 0.02 mg/g, 11.07 times higher than that of the original strain TR21. Discussion: This study shows that the genetic basis of high-yield strains is achieved through genome shuffling, which proves that genome shuffling can shorten the breeding cycle and improve the mutagenesis efficiency in obtaining the strains with good traits and it is a useful method for the molecular breeding of industrial strains.</description><subject>Acids</subject><subject>Breeding</subject><subject>Chromatography</subject><subject>Diterpenes, Abietane - biosynthesis</subject><subject>Diterpenes, Abietane - genetics</subject><subject>Diterpenes, Abietane - isolation &amp; purification</subject><subject>DNA</subject><subject>DNA shuffling</subject><subject>DNA Shuffling - methods</subject><subject>electrophoresis</subject><subject>Emericella</subject><subject>Emericella - genetics</subject><subject>Emericella - metabolism</subject><subject>Endophytes</subject><subject>Endophytes - genetics</subject><subject>Endophytes - metabolism</subject><subject>Fungi</subject><subject>Gene recombination</subject><subject>Genomes</subject><subject>genomics</subject><subject>Herbal medicine</subject><subject>High-performance liquid chromatography</subject><subject>Industrial strains</subject><subject>Life sciences</subject><subject>metabolic production</subject><subject>Metabolites</subject><subject>Microorganisms</subject><subject>Mutagenesis</subject><subject>Mutation - physiology</subject><subject>protoplasts</subject><subject>random amplified polymorphic DNA technique</subject><subject>RAPD</subject><subject>Salvia miltiorrhiza</subject><subject>strain breeding</subject><issn>1388-0209</issn><issn>1744-5116</issn><issn>1744-5116</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNp9kstu1DAUhiMEoqXwCCBLbNhk8D3JBlFVA4xUiQ2sLcc-zniU2IOdFM3b4-lMK8qCle3j7_znor-q3hK8IrjFHwlrW0xxt6KYtCvCW1LCz6pL0nBeC0Lk83IvTH2ELqpXOe8wxoIx8bK6YJhKiRtyWbl12OpgwKJ9inYxs48BRYdmHfLWhxgAbTbXyAcEwcb99jB7g9wSBo_WEyRvYBw1chGCN8voTSyv_oAGCHEClLeLc6MPw-vqhdNjhjfn86r6-WX94-Zbffv96-bm-rY2ohNzLcBSaawkjuGGU-h5A50EYQTH1HXcckY7ZgU1spdlZikk8B5z6FvaN8yxq2pz0rVR79Q--Umng4raq_tATIPSqYwwghKWdFJAyzupueB917ZN1xvqSnFbChetTyet_dJPYA2EOenxiejTn-C3aoh3SpKGcEmLwIezQIq_Fsizmny-X1iAuGRFOes4lZi3BX3_D7qLSwplVYoyQTAnnBwpcaJMijkncI_NEKyOrlAPrlBHV6izK0reu78necx6sEEBPp8AH1xMk_4d02jVrA9jTC4Vf_is2P9r_AGHx8aJ</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Zhang, Pengyu</creator><creator>Lee, Yiting</creator><creator>Wei, Xiying</creator><creator>Wu, Jinlan</creator><creator>Liu, Qingmei</creator><creator>Wan, Shanning</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><general>Taylor &amp; Francis Group</general><scope>0YH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20180101</creationdate><title>Enhanced production of tanshinone IIA in endophytic fungi Emericella foeniculicola by genome shuffling</title><author>Zhang, Pengyu ; Lee, Yiting ; Wei, Xiying ; Wu, Jinlan ; Liu, Qingmei ; Wan, Shanning</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c595t-5ed26cd61f30742eb47e96e5c5402f94d43293d52c6b6148656e4b04eb82b73f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Acids</topic><topic>Breeding</topic><topic>Chromatography</topic><topic>Diterpenes, Abietane - biosynthesis</topic><topic>Diterpenes, Abietane - genetics</topic><topic>Diterpenes, Abietane - isolation &amp; purification</topic><topic>DNA</topic><topic>DNA shuffling</topic><topic>DNA Shuffling - methods</topic><topic>electrophoresis</topic><topic>Emericella</topic><topic>Emericella - genetics</topic><topic>Emericella - metabolism</topic><topic>Endophytes</topic><topic>Endophytes - genetics</topic><topic>Endophytes - metabolism</topic><topic>Fungi</topic><topic>Gene recombination</topic><topic>Genomes</topic><topic>genomics</topic><topic>Herbal medicine</topic><topic>High-performance liquid chromatography</topic><topic>Industrial strains</topic><topic>Life sciences</topic><topic>metabolic production</topic><topic>Metabolites</topic><topic>Microorganisms</topic><topic>Mutagenesis</topic><topic>Mutation - physiology</topic><topic>protoplasts</topic><topic>random amplified polymorphic DNA technique</topic><topic>RAPD</topic><topic>Salvia miltiorrhiza</topic><topic>strain breeding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Pengyu</creatorcontrib><creatorcontrib>Lee, Yiting</creatorcontrib><creatorcontrib>Wei, Xiying</creatorcontrib><creatorcontrib>Wu, Jinlan</creatorcontrib><creatorcontrib>Liu, Qingmei</creatorcontrib><creatorcontrib>Wan, Shanning</creatorcontrib><collection>Taylor &amp; Francis Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Pharmaceutical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Pengyu</au><au>Lee, Yiting</au><au>Wei, Xiying</au><au>Wu, Jinlan</au><au>Liu, Qingmei</au><au>Wan, Shanning</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced production of tanshinone IIA in endophytic fungi Emericella foeniculicola by genome shuffling</atitle><jtitle>Pharmaceutical biology</jtitle><addtitle>Pharm Biol</addtitle><date>2018-01-01</date><risdate>2018</risdate><volume>56</volume><issue>1</issue><spage>357</spage><epage>362</epage><pages>357-362</pages><issn>1388-0209</issn><issn>1744-5116</issn><eissn>1744-5116</eissn><abstract>Context: Tanshinone IIA, commercially produced from Salvia miltiorrhiza Bunge (C.Y.Wu) (Labiatae), has various biological benefits. Currently, this compound is mainly extracted from plants. However, because of the long growth cycle and the unstable quality of plants, the market demands can barely be satisfied. Objective: The genomic shuffling technology is applied to screen the high-yield tanshinone IIA strain, which could be used to replace the plant S. miltiorrhiza for the production of tanshinone IIA. The change in the production of tanshinone IIA is clarified by comparing it with the original strain. Materials and methods: Tanshinone IIA was extracted from Strains cells, which was prepared through 0.5 mL protoplast samples by using hypertonic solution I from two different strains. Then, it was analyzed by high-performance liquid chromatography at 30 °C and UV 270 nm. Total DNA from the strains was extracted for RAPD amplification and electrophoresis to isolate the product. Results: In this study, a high-yield tanshinone IIA strain F-3.4 was screened and the yield of tanshinone IIA was increased by 387.56 ± 0.02 mg/g, 11.07 times higher than that of the original strain TR21. Discussion: This study shows that the genetic basis of high-yield strains is achieved through genome shuffling, which proves that genome shuffling can shorten the breeding cycle and improve the mutagenesis efficiency in obtaining the strains with good traits and it is a useful method for the molecular breeding of industrial strains.</abstract><cop>England</cop><pub>Taylor &amp; Francis</pub><pmid>30266071</pmid><doi>10.1080/13880209.2018.1481108</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1388-0209
ispartof Pharmaceutical biology, 2018-01, Vol.56 (1), p.357-362
issn 1388-0209
1744-5116
1744-5116
language eng
recordid cdi_proquest_journals_2351041418
source Taylor & Francis Open Access; MEDLINE; DOAJ Directory of Open Access Journals; PubMed Central; Alma/SFX Local Collection
subjects Acids
Breeding
Chromatography
Diterpenes, Abietane - biosynthesis
Diterpenes, Abietane - genetics
Diterpenes, Abietane - isolation & purification
DNA
DNA shuffling
DNA Shuffling - methods
electrophoresis
Emericella
Emericella - genetics
Emericella - metabolism
Endophytes
Endophytes - genetics
Endophytes - metabolism
Fungi
Gene recombination
Genomes
genomics
Herbal medicine
High-performance liquid chromatography
Industrial strains
Life sciences
metabolic production
Metabolites
Microorganisms
Mutagenesis
Mutation - physiology
protoplasts
random amplified polymorphic DNA technique
RAPD
Salvia miltiorrhiza
strain breeding
title Enhanced production of tanshinone IIA in endophytic fungi Emericella foeniculicola by genome shuffling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T08%3A17%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20production%20of%20tanshinone%20IIA%20in%20endophytic%20fungi%20Emericella%20foeniculicola%20by%20genome%20shuffling&rft.jtitle=Pharmaceutical%20biology&rft.au=Zhang,%20Pengyu&rft.date=2018-01-01&rft.volume=56&rft.issue=1&rft.spage=357&rft.epage=362&rft.pages=357-362&rft.issn=1388-0209&rft.eissn=1744-5116&rft_id=info:doi/10.1080/13880209.2018.1481108&rft_dat=%3Cproquest_cross%3E2351041418%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2351041418&rft_id=info:pmid/30266071&rft_doaj_id=oai_doaj_org_article_5d1965e8496a454b98879bc2f1f3db47&rfr_iscdi=true