Role of OmpA1 and OmpA2 in Aggregatibacter actinomycetemcomitans and Aggregatibacter aphrophilus serum resistance

Aggregatibacter actinomycetemcomitans and Aggregatibacter aphrophilus belong to the HACEK group of fastidious Gram-negative organisms, a recognized cause of infective endocarditis. A. actinomycetemcomitans is also implicated in aggressive forms of periodontitis. We demonstrated that A. aphrophilus s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of oral microbiology 2019-01, Vol.11 (1), p.1536192-1536192
Hauptverfasser: Lindholm, Mark, Min Aung, Kyaw, Nyunt Wai, Sun, Oscarsson, Jan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1536192
container_issue 1
container_start_page 1536192
container_title Journal of oral microbiology
container_volume 11
creator Lindholm, Mark
Min Aung, Kyaw
Nyunt Wai, Sun
Oscarsson, Jan
description Aggregatibacter actinomycetemcomitans and Aggregatibacter aphrophilus belong to the HACEK group of fastidious Gram-negative organisms, a recognized cause of infective endocarditis. A. actinomycetemcomitans is also implicated in aggressive forms of periodontitis. We demonstrated that A. aphrophilus strains, as A. actinomycetemcomitans are ubiquitously serum resistant. Both species encode two Outer membrane protein A paralogues, here denoted OmpA1 and OmpA2. As their respective pangenomes contain several OmpA1 and OmpA2 alleles, they represent potential genotypic markers. A naturally competent strain of A. actinomycetemcomitans and A. aphrophilus, respectively were used to elucidate if OmpA1 and OmpA2 contribute to serum resistance. Whereas OmpA1 was critical for survival of A. actinomycetemcomitans D7SS in 50% normal human serum (NHS), serum resistant ompA1 mutants were fortuitously obtained, expressing enhanced levels of OmpA2. Similarly, OmpA1 rather than OmpA2 was a major contributor to serum resistance of A. aphrophilus HK83. Far-Western blot revealed that OmpA1 AA , OmpA2 AA , and OmpA1 AP can bind to C4-binding protein, an inhibitor of classical and mannose-binding lectin (MBL) complement activation. Indeed, ompA1 mutants were susceptible to these pathways, but also to alternative complement activation. This may at least partly reflect a compromised outer membrane integrity but is also consistent with alternative mechanisms involved in OmpA-mediated serum resistance.
doi_str_mv 10.1080/20002297.2018.1536192
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_2351020724</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_3a4125a298ba422b952eeb121f8b0135</doaj_id><sourcerecordid>2351020724</sourcerecordid><originalsourceid>FETCH-LOGICAL-c666t-f32dbe50da3772318be9287446ce4ea8c0200fd3cfac64dd54ba4b5e3e2bf3da3</originalsourceid><addsrcrecordid>eNp9kktr3DAUhU1paUKan9Bi6KYbT6UryZY3pUP6CgQCpe1WyPK1R4NtTSS7Yf595fEkZFroRo-r7xy9TpK8pmRFiSTvgRACUBYrIFSuqGA5LeFZcj7Xs3nh-ZPxWXIZwjbOCAMpObxMzhgRpSwYOU_uvrsOU9ekt_1uTVM91IcRpHZI123rsdWjrbQZ0aextYPr9wZH7I3r7aiHcJD8Q-423u02tptCGtBPfeox2BB5g6-SF43uAl4e-4vk55fPP66-ZTe3X6-v1jeZyfN8zBoGdYWC1JoVBTAqKyxBFpznBjlqaUi8YFMz02iT87oWvNK8EsgQqoZF1UVyvfjWTm_Vztte-71y2qpDwflWaT9a06FimlMQGkoZPQCqUgBiRYE2siKUieiVLV7hHndTdeL2yf5aH9ymflLxKyhhkf-w8BHusTY4jF53J7LTlcFuVOt-qxxAcDobvDsaeHc3YRhVb4PBrtMDuikooDnwUtJiPtvbv9Ctm_wQn1YBEzQ-UwE8UmKhjHcheGweD0OJmjOlHjKl5kypY6ai7s3TmzyqHhIUgY8LYIfG-V7fO9_VatT7zvnGxw-3QbH_7_EH2FjcgQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2351020724</pqid></control><display><type>article</type><title>Role of OmpA1 and OmpA2 in Aggregatibacter actinomycetemcomitans and Aggregatibacter aphrophilus serum resistance</title><source>Taylor &amp; Francis Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Co-Action Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>SWEPUB Freely available online</source><creator>Lindholm, Mark ; Min Aung, Kyaw ; Nyunt Wai, Sun ; Oscarsson, Jan</creator><creatorcontrib>Lindholm, Mark ; Min Aung, Kyaw ; Nyunt Wai, Sun ; Oscarsson, Jan</creatorcontrib><description>Aggregatibacter actinomycetemcomitans and Aggregatibacter aphrophilus belong to the HACEK group of fastidious Gram-negative organisms, a recognized cause of infective endocarditis. A. actinomycetemcomitans is also implicated in aggressive forms of periodontitis. We demonstrated that A. aphrophilus strains, as A. actinomycetemcomitans are ubiquitously serum resistant. Both species encode two Outer membrane protein A paralogues, here denoted OmpA1 and OmpA2. As their respective pangenomes contain several OmpA1 and OmpA2 alleles, they represent potential genotypic markers. A naturally competent strain of A. actinomycetemcomitans and A. aphrophilus, respectively were used to elucidate if OmpA1 and OmpA2 contribute to serum resistance. Whereas OmpA1 was critical for survival of A. actinomycetemcomitans D7SS in 50% normal human serum (NHS), serum resistant ompA1 mutants were fortuitously obtained, expressing enhanced levels of OmpA2. Similarly, OmpA1 rather than OmpA2 was a major contributor to serum resistance of A. aphrophilus HK83. Far-Western blot revealed that OmpA1 AA , OmpA2 AA , and OmpA1 AP can bind to C4-binding protein, an inhibitor of classical and mannose-binding lectin (MBL) complement activation. Indeed, ompA1 mutants were susceptible to these pathways, but also to alternative complement activation. This may at least partly reflect a compromised outer membrane integrity but is also consistent with alternative mechanisms involved in OmpA-mediated serum resistance.</description><identifier>ISSN: 2000-2297</identifier><identifier>EISSN: 2000-2297</identifier><identifier>DOI: 10.1080/20002297.2018.1536192</identifier><identifier>PMID: 30598730</identifier><language>eng</language><publisher>United States: Taylor &amp; Francis</publisher><subject>Aggregatibacter actinomycetemcomitans ; Aggregatibacter aphrophilus ; Complement activation ; Complement component C4 ; Endocarditis ; Mannose ; Mannose-binding lectin ; Membrane proteins ; Membranes ; Mutants ; Original ; outer membrane protein A ; Periodontitis ; Protein A ; Proteins ; serum resistance</subject><ispartof>Journal of oral microbiology, 2019-01, Vol.11 (1), p.1536192-1536192</ispartof><rights>2018 The Author(s). Published by Informa UK Limited, trading as Taylor &amp; Francis Group. 2018</rights><rights>2018 The Author(s). Published by Informa UK Limited, trading as Taylor &amp; Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2018 The Author(s). Published by Informa UK Limited, trading as Taylor &amp; Francis Group. 2018 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c666t-f32dbe50da3772318be9287446ce4ea8c0200fd3cfac64dd54ba4b5e3e2bf3da3</citedby><cites>FETCH-LOGICAL-c666t-f32dbe50da3772318be9287446ce4ea8c0200fd3cfac64dd54ba4b5e3e2bf3da3</cites><orcidid>0000-0002-7948-9464</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6225413/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6225413/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,550,723,776,780,860,881,2096,27479,27901,27902,53766,53768,59116,59117</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30598730$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-153103$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Lindholm, Mark</creatorcontrib><creatorcontrib>Min Aung, Kyaw</creatorcontrib><creatorcontrib>Nyunt Wai, Sun</creatorcontrib><creatorcontrib>Oscarsson, Jan</creatorcontrib><title>Role of OmpA1 and OmpA2 in Aggregatibacter actinomycetemcomitans and Aggregatibacter aphrophilus serum resistance</title><title>Journal of oral microbiology</title><addtitle>J Oral Microbiol</addtitle><description>Aggregatibacter actinomycetemcomitans and Aggregatibacter aphrophilus belong to the HACEK group of fastidious Gram-negative organisms, a recognized cause of infective endocarditis. A. actinomycetemcomitans is also implicated in aggressive forms of periodontitis. We demonstrated that A. aphrophilus strains, as A. actinomycetemcomitans are ubiquitously serum resistant. Both species encode two Outer membrane protein A paralogues, here denoted OmpA1 and OmpA2. As their respective pangenomes contain several OmpA1 and OmpA2 alleles, they represent potential genotypic markers. A naturally competent strain of A. actinomycetemcomitans and A. aphrophilus, respectively were used to elucidate if OmpA1 and OmpA2 contribute to serum resistance. Whereas OmpA1 was critical for survival of A. actinomycetemcomitans D7SS in 50% normal human serum (NHS), serum resistant ompA1 mutants were fortuitously obtained, expressing enhanced levels of OmpA2. Similarly, OmpA1 rather than OmpA2 was a major contributor to serum resistance of A. aphrophilus HK83. Far-Western blot revealed that OmpA1 AA , OmpA2 AA , and OmpA1 AP can bind to C4-binding protein, an inhibitor of classical and mannose-binding lectin (MBL) complement activation. Indeed, ompA1 mutants were susceptible to these pathways, but also to alternative complement activation. This may at least partly reflect a compromised outer membrane integrity but is also consistent with alternative mechanisms involved in OmpA-mediated serum resistance.</description><subject>Aggregatibacter actinomycetemcomitans</subject><subject>Aggregatibacter aphrophilus</subject><subject>Complement activation</subject><subject>Complement component C4</subject><subject>Endocarditis</subject><subject>Mannose</subject><subject>Mannose-binding lectin</subject><subject>Membrane proteins</subject><subject>Membranes</subject><subject>Mutants</subject><subject>Original</subject><subject>outer membrane protein A</subject><subject>Periodontitis</subject><subject>Protein A</subject><subject>Proteins</subject><subject>serum resistance</subject><issn>2000-2297</issn><issn>2000-2297</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>BENPR</sourceid><sourceid>D8T</sourceid><sourceid>DOA</sourceid><recordid>eNp9kktr3DAUhU1paUKan9Bi6KYbT6UryZY3pUP6CgQCpe1WyPK1R4NtTSS7Yf595fEkZFroRo-r7xy9TpK8pmRFiSTvgRACUBYrIFSuqGA5LeFZcj7Xs3nh-ZPxWXIZwjbOCAMpObxMzhgRpSwYOU_uvrsOU9ekt_1uTVM91IcRpHZI123rsdWjrbQZ0aextYPr9wZH7I3r7aiHcJD8Q-423u02tptCGtBPfeox2BB5g6-SF43uAl4e-4vk55fPP66-ZTe3X6-v1jeZyfN8zBoGdYWC1JoVBTAqKyxBFpznBjlqaUi8YFMz02iT87oWvNK8EsgQqoZF1UVyvfjWTm_Vztte-71y2qpDwflWaT9a06FimlMQGkoZPQCqUgBiRYE2siKUieiVLV7hHndTdeL2yf5aH9ymflLxKyhhkf-w8BHusTY4jF53J7LTlcFuVOt-qxxAcDobvDsaeHc3YRhVb4PBrtMDuikooDnwUtJiPtvbv9Ctm_wQn1YBEzQ-UwE8UmKhjHcheGweD0OJmjOlHjKl5kypY6ai7s3TmzyqHhIUgY8LYIfG-V7fO9_VatT7zvnGxw-3QbH_7_EH2FjcgQ</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Lindholm, Mark</creator><creator>Min Aung, Kyaw</creator><creator>Nyunt Wai, Sun</creator><creator>Oscarsson, Jan</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><general>Taylor &amp; Francis Group</general><scope>0YH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7T7</scope><scope>7X7</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>ADHXS</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>D93</scope><scope>ZZAVC</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7948-9464</orcidid></search><sort><creationdate>20190101</creationdate><title>Role of OmpA1 and OmpA2 in Aggregatibacter actinomycetemcomitans and Aggregatibacter aphrophilus serum resistance</title><author>Lindholm, Mark ; Min Aung, Kyaw ; Nyunt Wai, Sun ; Oscarsson, Jan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c666t-f32dbe50da3772318be9287446ce4ea8c0200fd3cfac64dd54ba4b5e3e2bf3da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aggregatibacter actinomycetemcomitans</topic><topic>Aggregatibacter aphrophilus</topic><topic>Complement activation</topic><topic>Complement component C4</topic><topic>Endocarditis</topic><topic>Mannose</topic><topic>Mannose-binding lectin</topic><topic>Membrane proteins</topic><topic>Membranes</topic><topic>Mutants</topic><topic>Original</topic><topic>outer membrane protein A</topic><topic>Periodontitis</topic><topic>Protein A</topic><topic>Proteins</topic><topic>serum resistance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lindholm, Mark</creatorcontrib><creatorcontrib>Min Aung, Kyaw</creatorcontrib><creatorcontrib>Nyunt Wai, Sun</creatorcontrib><creatorcontrib>Oscarsson, Jan</creatorcontrib><collection>Taylor &amp; Francis Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SWEPUB Umeå universitet full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Umeå universitet</collection><collection>SwePub Articles full text</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of oral microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lindholm, Mark</au><au>Min Aung, Kyaw</au><au>Nyunt Wai, Sun</au><au>Oscarsson, Jan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of OmpA1 and OmpA2 in Aggregatibacter actinomycetemcomitans and Aggregatibacter aphrophilus serum resistance</atitle><jtitle>Journal of oral microbiology</jtitle><addtitle>J Oral Microbiol</addtitle><date>2019-01-01</date><risdate>2019</risdate><volume>11</volume><issue>1</issue><spage>1536192</spage><epage>1536192</epage><pages>1536192-1536192</pages><issn>2000-2297</issn><eissn>2000-2297</eissn><abstract>Aggregatibacter actinomycetemcomitans and Aggregatibacter aphrophilus belong to the HACEK group of fastidious Gram-negative organisms, a recognized cause of infective endocarditis. A. actinomycetemcomitans is also implicated in aggressive forms of periodontitis. We demonstrated that A. aphrophilus strains, as A. actinomycetemcomitans are ubiquitously serum resistant. Both species encode two Outer membrane protein A paralogues, here denoted OmpA1 and OmpA2. As their respective pangenomes contain several OmpA1 and OmpA2 alleles, they represent potential genotypic markers. A naturally competent strain of A. actinomycetemcomitans and A. aphrophilus, respectively were used to elucidate if OmpA1 and OmpA2 contribute to serum resistance. Whereas OmpA1 was critical for survival of A. actinomycetemcomitans D7SS in 50% normal human serum (NHS), serum resistant ompA1 mutants were fortuitously obtained, expressing enhanced levels of OmpA2. Similarly, OmpA1 rather than OmpA2 was a major contributor to serum resistance of A. aphrophilus HK83. Far-Western blot revealed that OmpA1 AA , OmpA2 AA , and OmpA1 AP can bind to C4-binding protein, an inhibitor of classical and mannose-binding lectin (MBL) complement activation. Indeed, ompA1 mutants were susceptible to these pathways, but also to alternative complement activation. This may at least partly reflect a compromised outer membrane integrity but is also consistent with alternative mechanisms involved in OmpA-mediated serum resistance.</abstract><cop>United States</cop><pub>Taylor &amp; Francis</pub><pmid>30598730</pmid><doi>10.1080/20002297.2018.1536192</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-7948-9464</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2000-2297
ispartof Journal of oral microbiology, 2019-01, Vol.11 (1), p.1536192-1536192
issn 2000-2297
2000-2297
language eng
recordid cdi_proquest_journals_2351020724
source Taylor & Francis Open Access; DOAJ Directory of Open Access Journals; Co-Action Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; SWEPUB Freely available online
subjects Aggregatibacter actinomycetemcomitans
Aggregatibacter aphrophilus
Complement activation
Complement component C4
Endocarditis
Mannose
Mannose-binding lectin
Membrane proteins
Membranes
Mutants
Original
outer membrane protein A
Periodontitis
Protein A
Proteins
serum resistance
title Role of OmpA1 and OmpA2 in Aggregatibacter actinomycetemcomitans and Aggregatibacter aphrophilus serum resistance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T19%3A20%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20OmpA1%20and%20OmpA2%20in%20Aggregatibacter%20actinomycetemcomitans%20and%20Aggregatibacter%20aphrophilus%20serum%20resistance&rft.jtitle=Journal%20of%20oral%20microbiology&rft.au=Lindholm,%20Mark&rft.date=2019-01-01&rft.volume=11&rft.issue=1&rft.spage=1536192&rft.epage=1536192&rft.pages=1536192-1536192&rft.issn=2000-2297&rft.eissn=2000-2297&rft_id=info:doi/10.1080/20002297.2018.1536192&rft_dat=%3Cproquest_pubme%3E2351020724%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2351020724&rft_id=info:pmid/30598730&rft_doaj_id=oai_doaj_org_article_3a4125a298ba422b952eeb121f8b0135&rfr_iscdi=true