Coupled Dissolution–Precipitation Reactions of Tennantite–Tetrahedrite Minerals in the Darasun Gold Deposit (Eastern Transbaikalia, Russia)

Heterogeneous rhythmic–zonal aggregates of tennantite-IV partly or completely replacing early homogeneous Zn-tetrahedrite-I grains and euhedral (Fe–Zn)-tennantite-I crystal were found in ores of the Darasun gold deposit. The different stages of fahlore replacement were observed. This initiates at gr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geology of ore deposits 2019-11, Vol.61 (6), p.530-548
Hauptverfasser: Lyubimtseva, N. G., Bortnikov, N. S., Borisovsky, S. E., Vikent’eva, O. V., Prokofiev, V. Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Heterogeneous rhythmic–zonal aggregates of tennantite-IV partly or completely replacing early homogeneous Zn-tetrahedrite-I grains and euhedral (Fe–Zn)-tennantite-I crystal were found in ores of the Darasun gold deposit. The different stages of fahlore replacement were observed. This initiates at grain boundaries and is terminated by a complete transformation into pseudomorphic, newly formed (Zn–Fe)-tennantite-IV aggregates surrounded by Zn-tetrahedrite-IV. These aggregates closely associate with bournonite and galena, and their precipitation initiated the formation of pseudomorphs. As is evident from the results of EMPA, (Fe–Zn)-tetrahedrite enriched in As in relation to Zn-tetrahedrite-I was precipitated at the initial stage. Tennantite with wide variations in the Sb/(Sb + As) and Fe/(Fe + Zn) ratios predominates in zonal heterogenous aggregates. There is a negative correlation between Sb/(Sb + As) and Fe/(Fe + Zn) ratios in (Fe–Zn)-tetrahedrite–tennantite-IV. In all sites, there is a miscibility gap between As and Sb and a sharp decrease in Sb/(Sb + As) ratio and increase in Fe/(Fe + Zn) ratio at the contact between Zn-tetrahedrite-I and newly formed (Fe–Zn)-tetrahedrite–tennantite-IV. The sharp zigzag boundaries between Zn-tetrahedrite-I and tennantite-IV and pores in newly formed aggregates provide evidence for coupled dissolution–precipitation reactions. The dissolution was initiated by disequilibrium between Zn-tetrahedrite-I and undersaturated fluid due to the precipitation of galena and bournonite. The precipitation of tetrahedrite–tennantite-IV occurred under the conditions of oscillation in Sb/(Sb + As) and Fe/(Fe + Zn) ratios due to the gradient of concentrations in the fluid. The temperature of crystallization of zonal heterogenous tennantite-IV aggregates ((134–161) ± 20°С) was calculated by the sphalerite–fahlore geothermometer. Instability of early Zn-tetrahedrite-I results from hydrothermal fluid cooling, decrease in fluid salinity, and change in the tetrahedrite and tennantite solubility due to the evolution of the conditions of semimetal migration.
ISSN:1075-7015
1555-6476
DOI:10.1134/S1075701519060047