Partitioned time stepping schemes for the non-stationary dual-fracture-matrix fluid flow model
•Finite element analysis for the dual-fracture-matrix multi-physics multi flow model.•Propose new interface conditions between macrofractures and dual-porosity medium.•Well-posedness of the triple-porosity fluid flow model is illustrated.•Derivation of stability and optimal convergence analysis for...
Gespeichert in:
Veröffentlicht in: | Applied Mathematical Modelling 2020-03, Vol.79, p.200-229 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 229 |
---|---|
container_issue | |
container_start_page | 200 |
container_title | Applied Mathematical Modelling |
container_volume | 79 |
creator | Nasu, Nasrin Jahan Mahbub, Md. Abdullah Al Hussain, Shahid Yang, Danping Zheng, Haibiao |
description | •Finite element analysis for the dual-fracture-matrix multi-physics multi flow model.•Propose new interface conditions between macrofractures and dual-porosity medium.•Well-posedness of the triple-porosity fluid flow model is illustrated.•Derivation of stability and optimal convergence analysis for the decoupled schemes.•Investigate parameter sensitivity for a pseudo-realistic geometrical setup.
This paper presents the coupled, and decoupled schemes for the naturally fractured reservoir consists of the triple-porosity medium. More specifically, the triple-porosity medium contains three contagious porous medium with more permeable macrofractures, less permeable microfractures, and matrix region which is often known as dual-fracture-matrix fluid flow model. Since the matrix has fluid communication with less permeable microfractures, and macrofratures are fed by the microfractures only, the global domain is divided into two subdomains by considering the traditional dual-porosity region and more permeable macrofractures region respectively. The flow and mass exchange between less permeable microfractures and more permeable macrofractures are modeled by two-fluid communication interface conditions while no-communication interface condition is imposed on between matrix and macrofractures region. The weak formulation and the well-posedness of the dual-fracture-matrix model are derived. Furthermore, coupled, implicit-explicit and data-passing partitioned schemes are proposed. The stability and the optimal convergence analysis are derived for both decoupled schemes. Five numerical examples are presented to illustrate the accuracy of the numerical methods and the applicability of the dual-fracture-matrix fluid flow model. Moreover, the parameter sensitivity analysis is performed in the fourth numerical example. |
doi_str_mv | 10.1016/j.apm.2019.10.032 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2350934483</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0307904X19306201</els_id><sourcerecordid>2350934483</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-21a868d848d9a83b223cda158cc76cf45b781c3980a5d9f31ca4071edec7ed6a3</originalsourceid><addsrcrecordid>eNp9UE1LxDAQDaLguvoDvAU8tyZNP1I8yaKrsKAHBU-GbDJ1U9qmJqkf_96U9eDJy8y84b35eAidU5JSQsvLNpVjn2aE1hGnhGUHaEEYqZKa5C-Hf-pjdOJ9SwgpIlqg10fpggnGDqBxMD1gH2AczfCGvdpBDx431uGwAzzYIfFBzlzpvrGeZJc0TqowOUh6GZz5wk03GR2j_cS91dCdoqNGdh7OfvMSPd_ePK3uks3D-n51vUkUK3lIMip5yTXPua4lZ9ssY0pLWnClqlI1ebGtOFWs5kQWum4YVTInFQUNqgJdSrZEF_u5o7PvE_ggWju5Ia4UGStIzfKcs8iie5Zy1nsHjRid6eMzghIx2yhaEW0Us41zK9oYNVd7DcTzPww44ZWBQYE2DlQQ2pp_1D9Tr3xw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2350934483</pqid></control><display><type>article</type><title>Partitioned time stepping schemes for the non-stationary dual-fracture-matrix fluid flow model</title><source>Education Source</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Business Source Complete</source><creator>Nasu, Nasrin Jahan ; Mahbub, Md. Abdullah Al ; Hussain, Shahid ; Yang, Danping ; Zheng, Haibiao</creator><creatorcontrib>Nasu, Nasrin Jahan ; Mahbub, Md. Abdullah Al ; Hussain, Shahid ; Yang, Danping ; Zheng, Haibiao</creatorcontrib><description>•Finite element analysis for the dual-fracture-matrix multi-physics multi flow model.•Propose new interface conditions between macrofractures and dual-porosity medium.•Well-posedness of the triple-porosity fluid flow model is illustrated.•Derivation of stability and optimal convergence analysis for the decoupled schemes.•Investigate parameter sensitivity for a pseudo-realistic geometrical setup.
This paper presents the coupled, and decoupled schemes for the naturally fractured reservoir consists of the triple-porosity medium. More specifically, the triple-porosity medium contains three contagious porous medium with more permeable macrofractures, less permeable microfractures, and matrix region which is often known as dual-fracture-matrix fluid flow model. Since the matrix has fluid communication with less permeable microfractures, and macrofratures are fed by the microfractures only, the global domain is divided into two subdomains by considering the traditional dual-porosity region and more permeable macrofractures region respectively. The flow and mass exchange between less permeable microfractures and more permeable macrofractures are modeled by two-fluid communication interface conditions while no-communication interface condition is imposed on between matrix and macrofractures region. The weak formulation and the well-posedness of the dual-fracture-matrix model are derived. Furthermore, coupled, implicit-explicit and data-passing partitioned schemes are proposed. The stability and the optimal convergence analysis are derived for both decoupled schemes. Five numerical examples are presented to illustrate the accuracy of the numerical methods and the applicability of the dual-fracture-matrix fluid flow model. Moreover, the parameter sensitivity analysis is performed in the fourth numerical example.</description><identifier>ISSN: 0307-904X</identifier><identifier>ISSN: 1088-8691</identifier><identifier>EISSN: 0307-904X</identifier><identifier>DOI: 10.1016/j.apm.2019.10.032</identifier><language>eng</language><publisher>New York: Elsevier Inc</publisher><subject>Communication ; Computational fluid dynamics ; Error analysis ; Fluid flow ; Fractured reservoirs ; Macrofracture ; Mathematical models ; Microfracture ; Numerical methods ; Parameter sensitivity ; Partitioned scheme ; Permeability ; Porosity ; Porous media ; Sensitivity analysis ; Stability analysis ; Triple-porosity ; Well posed problems</subject><ispartof>Applied Mathematical Modelling, 2020-03, Vol.79, p.200-229</ispartof><rights>2019 Elsevier Inc.</rights><rights>Copyright Elsevier BV Mar 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-21a868d848d9a83b223cda158cc76cf45b781c3980a5d9f31ca4071edec7ed6a3</citedby><cites>FETCH-LOGICAL-c368t-21a868d848d9a83b223cda158cc76cf45b781c3980a5d9f31ca4071edec7ed6a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0307904X19306201$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Nasu, Nasrin Jahan</creatorcontrib><creatorcontrib>Mahbub, Md. Abdullah Al</creatorcontrib><creatorcontrib>Hussain, Shahid</creatorcontrib><creatorcontrib>Yang, Danping</creatorcontrib><creatorcontrib>Zheng, Haibiao</creatorcontrib><title>Partitioned time stepping schemes for the non-stationary dual-fracture-matrix fluid flow model</title><title>Applied Mathematical Modelling</title><description>•Finite element analysis for the dual-fracture-matrix multi-physics multi flow model.•Propose new interface conditions between macrofractures and dual-porosity medium.•Well-posedness of the triple-porosity fluid flow model is illustrated.•Derivation of stability and optimal convergence analysis for the decoupled schemes.•Investigate parameter sensitivity for a pseudo-realistic geometrical setup.
This paper presents the coupled, and decoupled schemes for the naturally fractured reservoir consists of the triple-porosity medium. More specifically, the triple-porosity medium contains three contagious porous medium with more permeable macrofractures, less permeable microfractures, and matrix region which is often known as dual-fracture-matrix fluid flow model. Since the matrix has fluid communication with less permeable microfractures, and macrofratures are fed by the microfractures only, the global domain is divided into two subdomains by considering the traditional dual-porosity region and more permeable macrofractures region respectively. The flow and mass exchange between less permeable microfractures and more permeable macrofractures are modeled by two-fluid communication interface conditions while no-communication interface condition is imposed on between matrix and macrofractures region. The weak formulation and the well-posedness of the dual-fracture-matrix model are derived. Furthermore, coupled, implicit-explicit and data-passing partitioned schemes are proposed. The stability and the optimal convergence analysis are derived for both decoupled schemes. Five numerical examples are presented to illustrate the accuracy of the numerical methods and the applicability of the dual-fracture-matrix fluid flow model. Moreover, the parameter sensitivity analysis is performed in the fourth numerical example.</description><subject>Communication</subject><subject>Computational fluid dynamics</subject><subject>Error analysis</subject><subject>Fluid flow</subject><subject>Fractured reservoirs</subject><subject>Macrofracture</subject><subject>Mathematical models</subject><subject>Microfracture</subject><subject>Numerical methods</subject><subject>Parameter sensitivity</subject><subject>Partitioned scheme</subject><subject>Permeability</subject><subject>Porosity</subject><subject>Porous media</subject><subject>Sensitivity analysis</subject><subject>Stability analysis</subject><subject>Triple-porosity</subject><subject>Well posed problems</subject><issn>0307-904X</issn><issn>1088-8691</issn><issn>0307-904X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAQDaLguvoDvAU8tyZNP1I8yaKrsKAHBU-GbDJ1U9qmJqkf_96U9eDJy8y84b35eAidU5JSQsvLNpVjn2aE1hGnhGUHaEEYqZKa5C-Hf-pjdOJ9SwgpIlqg10fpggnGDqBxMD1gH2AczfCGvdpBDx431uGwAzzYIfFBzlzpvrGeZJc0TqowOUh6GZz5wk03GR2j_cS91dCdoqNGdh7OfvMSPd_ePK3uks3D-n51vUkUK3lIMip5yTXPua4lZ9ssY0pLWnClqlI1ebGtOFWs5kQWum4YVTInFQUNqgJdSrZEF_u5o7PvE_ggWju5Ia4UGStIzfKcs8iie5Zy1nsHjRid6eMzghIx2yhaEW0Us41zK9oYNVd7DcTzPww44ZWBQYE2DlQQ2pp_1D9Tr3xw</recordid><startdate>202003</startdate><enddate>202003</enddate><creator>Nasu, Nasrin Jahan</creator><creator>Mahbub, Md. Abdullah Al</creator><creator>Hussain, Shahid</creator><creator>Yang, Danping</creator><creator>Zheng, Haibiao</creator><general>Elsevier Inc</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>202003</creationdate><title>Partitioned time stepping schemes for the non-stationary dual-fracture-matrix fluid flow model</title><author>Nasu, Nasrin Jahan ; Mahbub, Md. Abdullah Al ; Hussain, Shahid ; Yang, Danping ; Zheng, Haibiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-21a868d848d9a83b223cda158cc76cf45b781c3980a5d9f31ca4071edec7ed6a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Communication</topic><topic>Computational fluid dynamics</topic><topic>Error analysis</topic><topic>Fluid flow</topic><topic>Fractured reservoirs</topic><topic>Macrofracture</topic><topic>Mathematical models</topic><topic>Microfracture</topic><topic>Numerical methods</topic><topic>Parameter sensitivity</topic><topic>Partitioned scheme</topic><topic>Permeability</topic><topic>Porosity</topic><topic>Porous media</topic><topic>Sensitivity analysis</topic><topic>Stability analysis</topic><topic>Triple-porosity</topic><topic>Well posed problems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nasu, Nasrin Jahan</creatorcontrib><creatorcontrib>Mahbub, Md. Abdullah Al</creatorcontrib><creatorcontrib>Hussain, Shahid</creatorcontrib><creatorcontrib>Yang, Danping</creatorcontrib><creatorcontrib>Zheng, Haibiao</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied Mathematical Modelling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nasu, Nasrin Jahan</au><au>Mahbub, Md. Abdullah Al</au><au>Hussain, Shahid</au><au>Yang, Danping</au><au>Zheng, Haibiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Partitioned time stepping schemes for the non-stationary dual-fracture-matrix fluid flow model</atitle><jtitle>Applied Mathematical Modelling</jtitle><date>2020-03</date><risdate>2020</risdate><volume>79</volume><spage>200</spage><epage>229</epage><pages>200-229</pages><issn>0307-904X</issn><issn>1088-8691</issn><eissn>0307-904X</eissn><abstract>•Finite element analysis for the dual-fracture-matrix multi-physics multi flow model.•Propose new interface conditions between macrofractures and dual-porosity medium.•Well-posedness of the triple-porosity fluid flow model is illustrated.•Derivation of stability and optimal convergence analysis for the decoupled schemes.•Investigate parameter sensitivity for a pseudo-realistic geometrical setup.
This paper presents the coupled, and decoupled schemes for the naturally fractured reservoir consists of the triple-porosity medium. More specifically, the triple-porosity medium contains three contagious porous medium with more permeable macrofractures, less permeable microfractures, and matrix region which is often known as dual-fracture-matrix fluid flow model. Since the matrix has fluid communication with less permeable microfractures, and macrofratures are fed by the microfractures only, the global domain is divided into two subdomains by considering the traditional dual-porosity region and more permeable macrofractures region respectively. The flow and mass exchange between less permeable microfractures and more permeable macrofractures are modeled by two-fluid communication interface conditions while no-communication interface condition is imposed on between matrix and macrofractures region. The weak formulation and the well-posedness of the dual-fracture-matrix model are derived. Furthermore, coupled, implicit-explicit and data-passing partitioned schemes are proposed. The stability and the optimal convergence analysis are derived for both decoupled schemes. Five numerical examples are presented to illustrate the accuracy of the numerical methods and the applicability of the dual-fracture-matrix fluid flow model. Moreover, the parameter sensitivity analysis is performed in the fourth numerical example.</abstract><cop>New York</cop><pub>Elsevier Inc</pub><doi>10.1016/j.apm.2019.10.032</doi><tpages>30</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0307-904X |
ispartof | Applied Mathematical Modelling, 2020-03, Vol.79, p.200-229 |
issn | 0307-904X 1088-8691 0307-904X |
language | eng |
recordid | cdi_proquest_journals_2350934483 |
source | Education Source; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Business Source Complete |
subjects | Communication Computational fluid dynamics Error analysis Fluid flow Fractured reservoirs Macrofracture Mathematical models Microfracture Numerical methods Parameter sensitivity Partitioned scheme Permeability Porosity Porous media Sensitivity analysis Stability analysis Triple-porosity Well posed problems |
title | Partitioned time stepping schemes for the non-stationary dual-fracture-matrix fluid flow model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T21%3A43%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Partitioned%20time%20stepping%20schemes%20for%20the%20non-stationary%20dual-fracture-matrix%20fluid%20flow%20model&rft.jtitle=Applied%20Mathematical%20Modelling&rft.au=Nasu,%20Nasrin%20Jahan&rft.date=2020-03&rft.volume=79&rft.spage=200&rft.epage=229&rft.pages=200-229&rft.issn=0307-904X&rft.eissn=0307-904X&rft_id=info:doi/10.1016/j.apm.2019.10.032&rft_dat=%3Cproquest_cross%3E2350934483%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2350934483&rft_id=info:pmid/&rft_els_id=S0307904X19306201&rfr_iscdi=true |