Passivity and passification of quaternion‐valued memristive neural networks

In this paper, a class of memristive neural networks with quaternion‐valued connection weights is studied. By starting from some basic quaternion‐valued algorithms, the quaternion‐valued memristive system is obtained; then, some passivity criteria for the memristive neural networks are presented bas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2020-03, Vol.43 (4), p.2032-2044
Hauptverfasser: Wei, Hongzhi, Wu, Baowei, Tu, Zhengwen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2044
container_issue 4
container_start_page 2032
container_title Mathematical methods in the applied sciences
container_volume 43
creator Wei, Hongzhi
Wu, Baowei
Tu, Zhengwen
description In this paper, a class of memristive neural networks with quaternion‐valued connection weights is studied. By starting from some basic quaternion‐valued algorithms, the quaternion‐valued memristive system is obtained; then, some passivity criteria for the memristive neural networks are presented based on some appropriate auxiliary functions. Furthermore, to tackle with the passification problem, two kinds of control protocols are designed. What should be mentioned is that, in the above derived conclusions, the partial order is employed, which can be employed to compare the “magnitude” of two different quaternions, and thus, the closed convex hull consisted by quaternion can be derived correspondingly. In the end, the analytical design are substantiated with two numerical results.
doi_str_mv 10.1002/mma.6030
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2350916640</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2350916640</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2930-bfc10fa09aac21920b1dff09758958b03ea65dfb5275538f367f79aded25b7d3</originalsourceid><addsrcrecordid>eNp10M1Kw0AUBeBBFKxV8BECbtyk3plkMpllKf5Bgy66H24yMzA1P-1M0tKdj-Az-iSm1q2rw4GPe-EQckthRgHYQ9PgLIMEzsiEgpQxTUV2TiZABcQpo-kluQphDQA5pWxCincMwe1cf4iw1dHm2KyrsHddG3U22g7YG9-O7fvza4f1YHTUmMa70LudiVozeKzH6Ped_wjX5MJiHczNX07J6ulxtXiJl2_Pr4v5Mq6YTCAubUXBIkjEilHJoKTaWpCC55LnJSQGM65tyZngPMltkgkrJGqjGS-FTqbk7nR247vtYEKv1t3g2_GjYgkHSbMshVHdn1TluxC8sWrjXYP-oCio41Zq3EodtxppfKJ7V5vDv04VxfzX_wBRTGyR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2350916640</pqid></control><display><type>article</type><title>Passivity and passification of quaternion‐valued memristive neural networks</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wei, Hongzhi ; Wu, Baowei ; Tu, Zhengwen</creator><creatorcontrib>Wei, Hongzhi ; Wu, Baowei ; Tu, Zhengwen</creatorcontrib><description>In this paper, a class of memristive neural networks with quaternion‐valued connection weights is studied. By starting from some basic quaternion‐valued algorithms, the quaternion‐valued memristive system is obtained; then, some passivity criteria for the memristive neural networks are presented based on some appropriate auxiliary functions. Furthermore, to tackle with the passification problem, two kinds of control protocols are designed. What should be mentioned is that, in the above derived conclusions, the partial order is employed, which can be employed to compare the “magnitude” of two different quaternions, and thus, the closed convex hull consisted by quaternion can be derived correspondingly. In the end, the analytical design are substantiated with two numerical results.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.6030</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; Computational geometry ; Convexity ; Hulls ; Memory devices ; memristor ; Neural networks ; passification ; Passivity ; Quaternions ; quaternion‐valued</subject><ispartof>Mathematical methods in the applied sciences, 2020-03, Vol.43 (4), p.2032-2044</ispartof><rights>2019 John Wiley &amp; Sons, Ltd.</rights><rights>2020 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2930-bfc10fa09aac21920b1dff09758958b03ea65dfb5275538f367f79aded25b7d3</citedby><cites>FETCH-LOGICAL-c2930-bfc10fa09aac21920b1dff09758958b03ea65dfb5275538f367f79aded25b7d3</cites><orcidid>0000-0002-4673-9834</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.6030$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.6030$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Wei, Hongzhi</creatorcontrib><creatorcontrib>Wu, Baowei</creatorcontrib><creatorcontrib>Tu, Zhengwen</creatorcontrib><title>Passivity and passification of quaternion‐valued memristive neural networks</title><title>Mathematical methods in the applied sciences</title><description>In this paper, a class of memristive neural networks with quaternion‐valued connection weights is studied. By starting from some basic quaternion‐valued algorithms, the quaternion‐valued memristive system is obtained; then, some passivity criteria for the memristive neural networks are presented based on some appropriate auxiliary functions. Furthermore, to tackle with the passification problem, two kinds of control protocols are designed. What should be mentioned is that, in the above derived conclusions, the partial order is employed, which can be employed to compare the “magnitude” of two different quaternions, and thus, the closed convex hull consisted by quaternion can be derived correspondingly. In the end, the analytical design are substantiated with two numerical results.</description><subject>Algorithms</subject><subject>Computational geometry</subject><subject>Convexity</subject><subject>Hulls</subject><subject>Memory devices</subject><subject>memristor</subject><subject>Neural networks</subject><subject>passification</subject><subject>Passivity</subject><subject>Quaternions</subject><subject>quaternion‐valued</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp10M1Kw0AUBeBBFKxV8BECbtyk3plkMpllKf5Bgy66H24yMzA1P-1M0tKdj-Az-iSm1q2rw4GPe-EQckthRgHYQ9PgLIMEzsiEgpQxTUV2TiZABcQpo-kluQphDQA5pWxCincMwe1cf4iw1dHm2KyrsHddG3U22g7YG9-O7fvza4f1YHTUmMa70LudiVozeKzH6Ped_wjX5MJiHczNX07J6ulxtXiJl2_Pr4v5Mq6YTCAubUXBIkjEilHJoKTaWpCC55LnJSQGM65tyZngPMltkgkrJGqjGS-FTqbk7nR247vtYEKv1t3g2_GjYgkHSbMshVHdn1TluxC8sWrjXYP-oCio41Zq3EodtxppfKJ7V5vDv04VxfzX_wBRTGyR</recordid><startdate>20200315</startdate><enddate>20200315</enddate><creator>Wei, Hongzhi</creator><creator>Wu, Baowei</creator><creator>Tu, Zhengwen</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-4673-9834</orcidid></search><sort><creationdate>20200315</creationdate><title>Passivity and passification of quaternion‐valued memristive neural networks</title><author>Wei, Hongzhi ; Wu, Baowei ; Tu, Zhengwen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2930-bfc10fa09aac21920b1dff09758958b03ea65dfb5275538f367f79aded25b7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Computational geometry</topic><topic>Convexity</topic><topic>Hulls</topic><topic>Memory devices</topic><topic>memristor</topic><topic>Neural networks</topic><topic>passification</topic><topic>Passivity</topic><topic>Quaternions</topic><topic>quaternion‐valued</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Hongzhi</creatorcontrib><creatorcontrib>Wu, Baowei</creatorcontrib><creatorcontrib>Tu, Zhengwen</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Hongzhi</au><au>Wu, Baowei</au><au>Tu, Zhengwen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Passivity and passification of quaternion‐valued memristive neural networks</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2020-03-15</date><risdate>2020</risdate><volume>43</volume><issue>4</issue><spage>2032</spage><epage>2044</epage><pages>2032-2044</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>In this paper, a class of memristive neural networks with quaternion‐valued connection weights is studied. By starting from some basic quaternion‐valued algorithms, the quaternion‐valued memristive system is obtained; then, some passivity criteria for the memristive neural networks are presented based on some appropriate auxiliary functions. Furthermore, to tackle with the passification problem, two kinds of control protocols are designed. What should be mentioned is that, in the above derived conclusions, the partial order is employed, which can be employed to compare the “magnitude” of two different quaternions, and thus, the closed convex hull consisted by quaternion can be derived correspondingly. In the end, the analytical design are substantiated with two numerical results.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.6030</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-4673-9834</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0170-4214
ispartof Mathematical methods in the applied sciences, 2020-03, Vol.43 (4), p.2032-2044
issn 0170-4214
1099-1476
language eng
recordid cdi_proquest_journals_2350916640
source Wiley Online Library Journals Frontfile Complete
subjects Algorithms
Computational geometry
Convexity
Hulls
Memory devices
memristor
Neural networks
passification
Passivity
Quaternions
quaternion‐valued
title Passivity and passification of quaternion‐valued memristive neural networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T05%3A08%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Passivity%20and%20passification%20of%20quaternion%E2%80%90valued%20memristive%20neural%20networks&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Wei,%20Hongzhi&rft.date=2020-03-15&rft.volume=43&rft.issue=4&rft.spage=2032&rft.epage=2044&rft.pages=2032-2044&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.6030&rft_dat=%3Cproquest_cross%3E2350916640%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2350916640&rft_id=info:pmid/&rfr_iscdi=true