Manufacturing Process for Improved Ultra‐Thick Cathodes in High‐Energy Lithium‐Ion Batteries

The effect of the mixing and drying process on the microstructure of ultra‐thick NCM 622 cathodes (50 mg cm−2, 8 mAh cm−2) and its implication for battery performance is investigated. It is observed that the shear force during the mixing process significantly influences the resulting microstructure...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy technology (Weinheim, Germany) Germany), 2020-02, Vol.8 (2), p.n/a
Hauptverfasser: Kremer, Lea Sophie, Hoffmann, Alice, Danner, Timo, Hein, Simon, Prifling, Benedikt, Westhoff, Daniel, Dreer, Christian, Latz, Arnulf, Schmidt, Volker, Wohlfahrt-Mehrens, Margret
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 2
container_start_page
container_title Energy technology (Weinheim, Germany)
container_volume 8
creator Kremer, Lea Sophie
Hoffmann, Alice
Danner, Timo
Hein, Simon
Prifling, Benedikt
Westhoff, Daniel
Dreer, Christian
Latz, Arnulf
Schmidt, Volker
Wohlfahrt-Mehrens, Margret
description The effect of the mixing and drying process on the microstructure of ultra‐thick NCM 622 cathodes (50 mg cm−2, 8 mAh cm−2) and its implication for battery performance is investigated. It is observed that the shear force during the mixing process significantly influences the resulting microstructure with regard to binder migration during the drying process. Based on the information extracted from scanning electron microscopy–energy dispersive X‐ray spectroscopy (SEM–EDX) cross sections, the carbon binder domain (CBD) is distributed in the pore space of virtual electrodes generated by a stochastic 3D microstructure model. Simulations predict a CBD configuration that leads to optimal performance of the electrode. Furthermore, it is shown that a low drying rate has a beneficial influence toward the rate capability of the ultra‐thick cathodes. The specific energy of an ultra‐thick cathode is 18% higher compared with a cathode prepared according to the state of the art. With an improved process in a pilot scale, the advantage can be kept up to current densities of at least 3 mA cm−². Ultra‐thick electrodes promise a higher energy density and a better ratio of active to inactive cell components than state‐of‐the‐art electrodes. By application of an improved manufacturing process, ultra‐thick cathodes (50 mg cm−2) with an enhanced rate capability were yielded, that provide an 18% higher specific energy at a current density of 1 mA cm−2 compared with a state‐of‐the‐art cathode (20 mg cm−2).
doi_str_mv 10.1002/ente.201900167
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2350903908</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2350903908</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4227-a99fb46c820b6b5a0df7d77d5fde69bf98b5f0f351daa39eb0531c838a28fa303</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EEhV0y9oS65SxnYe9hCrQSuWxaNeWk9iNS5sUOwF1xyfwjXwJrorKktWMZs6dx0XoisCIANAb3XR6RIEIAJJmJ2hAiYijmIr09Jhzfo6G3q8gMJCwBNgAFY-q6Y0qu97ZZolfXFtq77FpHZ5utq591xVerDunvj-_5rUtX_FYdXVbaY9tgyd2WYdG3mi33OGZ7Wrbb0Jh2jb4TnWddlb7S3Rm1Nrr4W-8QIv7fD6eRLPnh-n4dhaVMaVZpIQwRZyWnEKRFomCymRVllWJqXQqCiN4kRgwLCGVUkzoIrxASs64otwoBuwCXR_mhrPfeu07uWp714SVkoZnBTABPFCjA1W61nunjdw6u1FuJwnIvZVyb6U8WhkE4iD4sGu9-4eW-dM8_9P-AOi3e8s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2350903908</pqid></control><display><type>article</type><title>Manufacturing Process for Improved Ultra‐Thick Cathodes in High‐Energy Lithium‐Ion Batteries</title><source>Wiley-Blackwell Journals</source><creator>Kremer, Lea Sophie ; Hoffmann, Alice ; Danner, Timo ; Hein, Simon ; Prifling, Benedikt ; Westhoff, Daniel ; Dreer, Christian ; Latz, Arnulf ; Schmidt, Volker ; Wohlfahrt-Mehrens, Margret</creator><creatorcontrib>Kremer, Lea Sophie ; Hoffmann, Alice ; Danner, Timo ; Hein, Simon ; Prifling, Benedikt ; Westhoff, Daniel ; Dreer, Christian ; Latz, Arnulf ; Schmidt, Volker ; Wohlfahrt-Mehrens, Margret</creatorcontrib><description>The effect of the mixing and drying process on the microstructure of ultra‐thick NCM 622 cathodes (50 mg cm−2, 8 mAh cm−2) and its implication for battery performance is investigated. It is observed that the shear force during the mixing process significantly influences the resulting microstructure with regard to binder migration during the drying process. Based on the information extracted from scanning electron microscopy–energy dispersive X‐ray spectroscopy (SEM–EDX) cross sections, the carbon binder domain (CBD) is distributed in the pore space of virtual electrodes generated by a stochastic 3D microstructure model. Simulations predict a CBD configuration that leads to optimal performance of the electrode. Furthermore, it is shown that a low drying rate has a beneficial influence toward the rate capability of the ultra‐thick cathodes. The specific energy of an ultra‐thick cathode is 18% higher compared with a cathode prepared according to the state of the art. With an improved process in a pilot scale, the advantage can be kept up to current densities of at least 3 mA cm−². Ultra‐thick electrodes promise a higher energy density and a better ratio of active to inactive cell components than state‐of‐the‐art electrodes. By application of an improved manufacturing process, ultra‐thick cathodes (50 mg cm−2) with an enhanced rate capability were yielded, that provide an 18% higher specific energy at a current density of 1 mA cm−2 compared with a state‐of‐the‐art cathode (20 mg cm−2).</description><identifier>ISSN: 2194-4288</identifier><identifier>EISSN: 2194-4296</identifier><identifier>DOI: 10.1002/ente.201900167</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>3D-microstructure modeling and simulation ; Batteries ; binder gradients ; Cathodes ; Computer simulation ; Drying ; electrode manufacturing ; Electrodes ; high-energy lithium-ion batteries ; Lithium ; Lithium-ion batteries ; Manufacturing industry ; Microstructure ; Shear forces ; Three dimensional models ; ultra-thick electrodes</subject><ispartof>Energy technology (Weinheim, Germany), 2020-02, Vol.8 (2), p.n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2020 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4227-a99fb46c820b6b5a0df7d77d5fde69bf98b5f0f351daa39eb0531c838a28fa303</citedby><cites>FETCH-LOGICAL-c4227-a99fb46c820b6b5a0df7d77d5fde69bf98b5f0f351daa39eb0531c838a28fa303</cites><orcidid>0000-0002-2411-3785</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fente.201900167$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fente.201900167$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Kremer, Lea Sophie</creatorcontrib><creatorcontrib>Hoffmann, Alice</creatorcontrib><creatorcontrib>Danner, Timo</creatorcontrib><creatorcontrib>Hein, Simon</creatorcontrib><creatorcontrib>Prifling, Benedikt</creatorcontrib><creatorcontrib>Westhoff, Daniel</creatorcontrib><creatorcontrib>Dreer, Christian</creatorcontrib><creatorcontrib>Latz, Arnulf</creatorcontrib><creatorcontrib>Schmidt, Volker</creatorcontrib><creatorcontrib>Wohlfahrt-Mehrens, Margret</creatorcontrib><title>Manufacturing Process for Improved Ultra‐Thick Cathodes in High‐Energy Lithium‐Ion Batteries</title><title>Energy technology (Weinheim, Germany)</title><description>The effect of the mixing and drying process on the microstructure of ultra‐thick NCM 622 cathodes (50 mg cm−2, 8 mAh cm−2) and its implication for battery performance is investigated. It is observed that the shear force during the mixing process significantly influences the resulting microstructure with regard to binder migration during the drying process. Based on the information extracted from scanning electron microscopy–energy dispersive X‐ray spectroscopy (SEM–EDX) cross sections, the carbon binder domain (CBD) is distributed in the pore space of virtual electrodes generated by a stochastic 3D microstructure model. Simulations predict a CBD configuration that leads to optimal performance of the electrode. Furthermore, it is shown that a low drying rate has a beneficial influence toward the rate capability of the ultra‐thick cathodes. The specific energy of an ultra‐thick cathode is 18% higher compared with a cathode prepared according to the state of the art. With an improved process in a pilot scale, the advantage can be kept up to current densities of at least 3 mA cm−². Ultra‐thick electrodes promise a higher energy density and a better ratio of active to inactive cell components than state‐of‐the‐art electrodes. By application of an improved manufacturing process, ultra‐thick cathodes (50 mg cm−2) with an enhanced rate capability were yielded, that provide an 18% higher specific energy at a current density of 1 mA cm−2 compared with a state‐of‐the‐art cathode (20 mg cm−2).</description><subject>3D-microstructure modeling and simulation</subject><subject>Batteries</subject><subject>binder gradients</subject><subject>Cathodes</subject><subject>Computer simulation</subject><subject>Drying</subject><subject>electrode manufacturing</subject><subject>Electrodes</subject><subject>high-energy lithium-ion batteries</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Manufacturing industry</subject><subject>Microstructure</subject><subject>Shear forces</subject><subject>Three dimensional models</subject><subject>ultra-thick electrodes</subject><issn>2194-4288</issn><issn>2194-4296</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EEhV0y9oS65SxnYe9hCrQSuWxaNeWk9iNS5sUOwF1xyfwjXwJrorKktWMZs6dx0XoisCIANAb3XR6RIEIAJJmJ2hAiYijmIr09Jhzfo6G3q8gMJCwBNgAFY-q6Y0qu97ZZolfXFtq77FpHZ5utq591xVerDunvj-_5rUtX_FYdXVbaY9tgyd2WYdG3mi33OGZ7Wrbb0Jh2jb4TnWddlb7S3Rm1Nrr4W-8QIv7fD6eRLPnh-n4dhaVMaVZpIQwRZyWnEKRFomCymRVllWJqXQqCiN4kRgwLCGVUkzoIrxASs64otwoBuwCXR_mhrPfeu07uWp714SVkoZnBTABPFCjA1W61nunjdw6u1FuJwnIvZVyb6U8WhkE4iD4sGu9-4eW-dM8_9P-AOi3e8s</recordid><startdate>202002</startdate><enddate>202002</enddate><creator>Kremer, Lea Sophie</creator><creator>Hoffmann, Alice</creator><creator>Danner, Timo</creator><creator>Hein, Simon</creator><creator>Prifling, Benedikt</creator><creator>Westhoff, Daniel</creator><creator>Dreer, Christian</creator><creator>Latz, Arnulf</creator><creator>Schmidt, Volker</creator><creator>Wohlfahrt-Mehrens, Margret</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2411-3785</orcidid></search><sort><creationdate>202002</creationdate><title>Manufacturing Process for Improved Ultra‐Thick Cathodes in High‐Energy Lithium‐Ion Batteries</title><author>Kremer, Lea Sophie ; Hoffmann, Alice ; Danner, Timo ; Hein, Simon ; Prifling, Benedikt ; Westhoff, Daniel ; Dreer, Christian ; Latz, Arnulf ; Schmidt, Volker ; Wohlfahrt-Mehrens, Margret</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4227-a99fb46c820b6b5a0df7d77d5fde69bf98b5f0f351daa39eb0531c838a28fa303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>3D-microstructure modeling and simulation</topic><topic>Batteries</topic><topic>binder gradients</topic><topic>Cathodes</topic><topic>Computer simulation</topic><topic>Drying</topic><topic>electrode manufacturing</topic><topic>Electrodes</topic><topic>high-energy lithium-ion batteries</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Manufacturing industry</topic><topic>Microstructure</topic><topic>Shear forces</topic><topic>Three dimensional models</topic><topic>ultra-thick electrodes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kremer, Lea Sophie</creatorcontrib><creatorcontrib>Hoffmann, Alice</creatorcontrib><creatorcontrib>Danner, Timo</creatorcontrib><creatorcontrib>Hein, Simon</creatorcontrib><creatorcontrib>Prifling, Benedikt</creatorcontrib><creatorcontrib>Westhoff, Daniel</creatorcontrib><creatorcontrib>Dreer, Christian</creatorcontrib><creatorcontrib>Latz, Arnulf</creatorcontrib><creatorcontrib>Schmidt, Volker</creatorcontrib><creatorcontrib>Wohlfahrt-Mehrens, Margret</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Energy technology (Weinheim, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kremer, Lea Sophie</au><au>Hoffmann, Alice</au><au>Danner, Timo</au><au>Hein, Simon</au><au>Prifling, Benedikt</au><au>Westhoff, Daniel</au><au>Dreer, Christian</au><au>Latz, Arnulf</au><au>Schmidt, Volker</au><au>Wohlfahrt-Mehrens, Margret</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Manufacturing Process for Improved Ultra‐Thick Cathodes in High‐Energy Lithium‐Ion Batteries</atitle><jtitle>Energy technology (Weinheim, Germany)</jtitle><date>2020-02</date><risdate>2020</risdate><volume>8</volume><issue>2</issue><epage>n/a</epage><issn>2194-4288</issn><eissn>2194-4296</eissn><abstract>The effect of the mixing and drying process on the microstructure of ultra‐thick NCM 622 cathodes (50 mg cm−2, 8 mAh cm−2) and its implication for battery performance is investigated. It is observed that the shear force during the mixing process significantly influences the resulting microstructure with regard to binder migration during the drying process. Based on the information extracted from scanning electron microscopy–energy dispersive X‐ray spectroscopy (SEM–EDX) cross sections, the carbon binder domain (CBD) is distributed in the pore space of virtual electrodes generated by a stochastic 3D microstructure model. Simulations predict a CBD configuration that leads to optimal performance of the electrode. Furthermore, it is shown that a low drying rate has a beneficial influence toward the rate capability of the ultra‐thick cathodes. The specific energy of an ultra‐thick cathode is 18% higher compared with a cathode prepared according to the state of the art. With an improved process in a pilot scale, the advantage can be kept up to current densities of at least 3 mA cm−². Ultra‐thick electrodes promise a higher energy density and a better ratio of active to inactive cell components than state‐of‐the‐art electrodes. By application of an improved manufacturing process, ultra‐thick cathodes (50 mg cm−2) with an enhanced rate capability were yielded, that provide an 18% higher specific energy at a current density of 1 mA cm−2 compared with a state‐of‐the‐art cathode (20 mg cm−2).</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ente.201900167</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-2411-3785</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2194-4288
ispartof Energy technology (Weinheim, Germany), 2020-02, Vol.8 (2), p.n/a
issn 2194-4288
2194-4296
language eng
recordid cdi_proquest_journals_2350903908
source Wiley-Blackwell Journals
subjects 3D-microstructure modeling and simulation
Batteries
binder gradients
Cathodes
Computer simulation
Drying
electrode manufacturing
Electrodes
high-energy lithium-ion batteries
Lithium
Lithium-ion batteries
Manufacturing industry
Microstructure
Shear forces
Three dimensional models
ultra-thick electrodes
title Manufacturing Process for Improved Ultra‐Thick Cathodes in High‐Energy Lithium‐Ion Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T20%3A30%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Manufacturing%20Process%20for%20Improved%20Ultra%E2%80%90Thick%20Cathodes%20in%20High%E2%80%90Energy%20Lithium%E2%80%90Ion%20Batteries&rft.jtitle=Energy%20technology%20(Weinheim,%20Germany)&rft.au=Kremer,%20Lea%20Sophie&rft.date=2020-02&rft.volume=8&rft.issue=2&rft.epage=n/a&rft.issn=2194-4288&rft.eissn=2194-4296&rft_id=info:doi/10.1002/ente.201900167&rft_dat=%3Cproquest_cross%3E2350903908%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2350903908&rft_id=info:pmid/&rfr_iscdi=true