Computational Analysis of Interfacial Dynamics in Angled Hele-Shaw Cells: Instability Regimes

We present a theoretical and numerical study on the (in)stability of the interface between two immiscible liquids, i.e., viscous fingering, in angled Hele-Shaw cells across a range of capillary numbers ( Ca ). We consider two types of angled Hele-Shaw cells: diverging cells with a positive depth gra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transport in porous media 2020-02, Vol.131 (3), p.907-934
Hauptverfasser: Lu, Daihui, Municchi, Federico, Christov, Ivan C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 934
container_issue 3
container_start_page 907
container_title Transport in porous media
container_volume 131
creator Lu, Daihui
Municchi, Federico
Christov, Ivan C.
description We present a theoretical and numerical study on the (in)stability of the interface between two immiscible liquids, i.e., viscous fingering, in angled Hele-Shaw cells across a range of capillary numbers ( Ca ). We consider two types of angled Hele-Shaw cells: diverging cells with a positive depth gradient and converging cells with a negative depth gradient, and compare those against parallel cells without a depth gradient. A modified linear stability analysis is employed to derive an expression for the growth rate of perturbations on the interface and for the critical capillary number ( C a c ) for such tapered Hele-Shaw cells with small gap gradients. Based on this new expression for C a c , a three-regime theory is formulated to describe the interface (in)stability: (i) in Regime I, the growth rate is always negative, thus the interface is stable; (ii) in Regime II, the growth rate remains zero (parallel cells), changes from negative to positive (converging cells), or from positive to negative (diverging cells), thus the interface (in)stability possibly changes type at some location in the cell; (iii) in Regime III, the growth rate is always positive, thus the interface is unstable. We conduct three-dimensional direct numerical simulations of the full Navier–Stokes equations, using a phase field method to enforce surface tension at the interface, to verify the theory and explore the effect of depth gradient on the interface (in)stability. We demonstrate that the depth gradient has only a slight influence in Regime I, and its effect is most pronounced in Regime III. Finally, we provide a critical discussion of the stability diagram derived from theoretical considerations versus the one obtained from direct numerical simulations.
doi_str_mv 10.1007/s11242-019-01371-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2350779642</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2350779642</sourcerecordid><originalsourceid>FETCH-LOGICAL-a379t-3aa2d7a647afc899aedb25079148999fb0207c0ce882566bf9b6306c8d87094f3</originalsourceid><addsrcrecordid>eNp9kFtLxDAQhYMouK7-AZ8KPkdzaZPGt6VedmFB8PIoIW2TNUsva6aL9N-btYJvPswMM3znwByELim5poTIG6CUpQwTqmJxSTE7QjOaSY6p4OkxmhEqFOaK8lN0BrAlJMrydIbei77d7Qcz-L4zTbKIbQQPSe-SVTfY4Ezl4_1u7EzrK0h8F5lNY-tkaRuLXz7MV1LYpoHbyMNgSt_4YUye7ca3Fs7RiTMN2IvfOUdvD_evxRKvnx5XxWKNDZdqwNwYVksjUmlclStlbF2yjEhF07gpVxJGZEUqm-csE6J0qhSciCqvc0lU6vgcXU2-u9B_7i0MetvvQ_wFNOPRSCqRskixiapCDxCs07vgWxNGTYk-xKinGHWMUf_EqA8iPokgwt3Ghj_rf1TfQBF00w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2350779642</pqid></control><display><type>article</type><title>Computational Analysis of Interfacial Dynamics in Angled Hele-Shaw Cells: Instability Regimes</title><source>SpringerNature Journals</source><creator>Lu, Daihui ; Municchi, Federico ; Christov, Ivan C.</creator><creatorcontrib>Lu, Daihui ; Municchi, Federico ; Christov, Ivan C.</creatorcontrib><description>We present a theoretical and numerical study on the (in)stability of the interface between two immiscible liquids, i.e., viscous fingering, in angled Hele-Shaw cells across a range of capillary numbers ( Ca ). We consider two types of angled Hele-Shaw cells: diverging cells with a positive depth gradient and converging cells with a negative depth gradient, and compare those against parallel cells without a depth gradient. A modified linear stability analysis is employed to derive an expression for the growth rate of perturbations on the interface and for the critical capillary number ( C a c ) for such tapered Hele-Shaw cells with small gap gradients. Based on this new expression for C a c , a three-regime theory is formulated to describe the interface (in)stability: (i) in Regime I, the growth rate is always negative, thus the interface is stable; (ii) in Regime II, the growth rate remains zero (parallel cells), changes from negative to positive (converging cells), or from positive to negative (diverging cells), thus the interface (in)stability possibly changes type at some location in the cell; (iii) in Regime III, the growth rate is always positive, thus the interface is unstable. We conduct three-dimensional direct numerical simulations of the full Navier–Stokes equations, using a phase field method to enforce surface tension at the interface, to verify the theory and explore the effect of depth gradient on the interface (in)stability. We demonstrate that the depth gradient has only a slight influence in Regime I, and its effect is most pronounced in Regime III. Finally, we provide a critical discussion of the stability diagram derived from theoretical considerations versus the one obtained from direct numerical simulations.</description><identifier>ISSN: 0169-3913</identifier><identifier>EISSN: 1573-1634</identifier><identifier>DOI: 10.1007/s11242-019-01371-2</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Civil Engineering ; Classical and Continuum Physics ; Computational fluid dynamics ; Computer simulation ; Convergence ; Dynamic stability ; Earth and Environmental Science ; Earth Sciences ; Geotechnical Engineering &amp; Applied Earth Sciences ; Hydrogeology ; Hydrology/Water Resources ; Industrial Chemistry/Chemical Engineering ; Interface stability ; Stability analysis ; Surface tension</subject><ispartof>Transport in porous media, 2020-02, Vol.131 (3), p.907-934</ispartof><rights>Springer Nature B.V. 2019</rights><rights>Transport in Porous Media is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a379t-3aa2d7a647afc899aedb25079148999fb0207c0ce882566bf9b6306c8d87094f3</citedby><cites>FETCH-LOGICAL-a379t-3aa2d7a647afc899aedb25079148999fb0207c0ce882566bf9b6306c8d87094f3</cites><orcidid>0000-0002-5105-6173 ; 0000-0001-8531-0531</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11242-019-01371-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11242-019-01371-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Lu, Daihui</creatorcontrib><creatorcontrib>Municchi, Federico</creatorcontrib><creatorcontrib>Christov, Ivan C.</creatorcontrib><title>Computational Analysis of Interfacial Dynamics in Angled Hele-Shaw Cells: Instability Regimes</title><title>Transport in porous media</title><addtitle>Transp Porous Med</addtitle><description>We present a theoretical and numerical study on the (in)stability of the interface between two immiscible liquids, i.e., viscous fingering, in angled Hele-Shaw cells across a range of capillary numbers ( Ca ). We consider two types of angled Hele-Shaw cells: diverging cells with a positive depth gradient and converging cells with a negative depth gradient, and compare those against parallel cells without a depth gradient. A modified linear stability analysis is employed to derive an expression for the growth rate of perturbations on the interface and for the critical capillary number ( C a c ) for such tapered Hele-Shaw cells with small gap gradients. Based on this new expression for C a c , a three-regime theory is formulated to describe the interface (in)stability: (i) in Regime I, the growth rate is always negative, thus the interface is stable; (ii) in Regime II, the growth rate remains zero (parallel cells), changes from negative to positive (converging cells), or from positive to negative (diverging cells), thus the interface (in)stability possibly changes type at some location in the cell; (iii) in Regime III, the growth rate is always positive, thus the interface is unstable. We conduct three-dimensional direct numerical simulations of the full Navier–Stokes equations, using a phase field method to enforce surface tension at the interface, to verify the theory and explore the effect of depth gradient on the interface (in)stability. We demonstrate that the depth gradient has only a slight influence in Regime I, and its effect is most pronounced in Regime III. Finally, we provide a critical discussion of the stability diagram derived from theoretical considerations versus the one obtained from direct numerical simulations.</description><subject>Civil Engineering</subject><subject>Classical and Continuum Physics</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Convergence</subject><subject>Dynamic stability</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Geotechnical Engineering &amp; Applied Earth Sciences</subject><subject>Hydrogeology</subject><subject>Hydrology/Water Resources</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Interface stability</subject><subject>Stability analysis</subject><subject>Surface tension</subject><issn>0169-3913</issn><issn>1573-1634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kFtLxDAQhYMouK7-AZ8KPkdzaZPGt6VedmFB8PIoIW2TNUsva6aL9N-btYJvPswMM3znwByELim5poTIG6CUpQwTqmJxSTE7QjOaSY6p4OkxmhEqFOaK8lN0BrAlJMrydIbei77d7Qcz-L4zTbKIbQQPSe-SVTfY4Ezl4_1u7EzrK0h8F5lNY-tkaRuLXz7MV1LYpoHbyMNgSt_4YUye7ca3Fs7RiTMN2IvfOUdvD_evxRKvnx5XxWKNDZdqwNwYVksjUmlclStlbF2yjEhF07gpVxJGZEUqm-csE6J0qhSciCqvc0lU6vgcXU2-u9B_7i0MetvvQ_wFNOPRSCqRskixiapCDxCs07vgWxNGTYk-xKinGHWMUf_EqA8iPokgwt3Ghj_rf1TfQBF00w</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Lu, Daihui</creator><creator>Municchi, Federico</creator><creator>Christov, Ivan C.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-5105-6173</orcidid><orcidid>https://orcid.org/0000-0001-8531-0531</orcidid></search><sort><creationdate>20200201</creationdate><title>Computational Analysis of Interfacial Dynamics in Angled Hele-Shaw Cells: Instability Regimes</title><author>Lu, Daihui ; Municchi, Federico ; Christov, Ivan C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a379t-3aa2d7a647afc899aedb25079148999fb0207c0ce882566bf9b6306c8d87094f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Civil Engineering</topic><topic>Classical and Continuum Physics</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Convergence</topic><topic>Dynamic stability</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Geotechnical Engineering &amp; Applied Earth Sciences</topic><topic>Hydrogeology</topic><topic>Hydrology/Water Resources</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Interface stability</topic><topic>Stability analysis</topic><topic>Surface tension</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Daihui</creatorcontrib><creatorcontrib>Municchi, Federico</creatorcontrib><creatorcontrib>Christov, Ivan C.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Transport in porous media</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Daihui</au><au>Municchi, Federico</au><au>Christov, Ivan C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational Analysis of Interfacial Dynamics in Angled Hele-Shaw Cells: Instability Regimes</atitle><jtitle>Transport in porous media</jtitle><stitle>Transp Porous Med</stitle><date>2020-02-01</date><risdate>2020</risdate><volume>131</volume><issue>3</issue><spage>907</spage><epage>934</epage><pages>907-934</pages><issn>0169-3913</issn><eissn>1573-1634</eissn><abstract>We present a theoretical and numerical study on the (in)stability of the interface between two immiscible liquids, i.e., viscous fingering, in angled Hele-Shaw cells across a range of capillary numbers ( Ca ). We consider two types of angled Hele-Shaw cells: diverging cells with a positive depth gradient and converging cells with a negative depth gradient, and compare those against parallel cells without a depth gradient. A modified linear stability analysis is employed to derive an expression for the growth rate of perturbations on the interface and for the critical capillary number ( C a c ) for such tapered Hele-Shaw cells with small gap gradients. Based on this new expression for C a c , a three-regime theory is formulated to describe the interface (in)stability: (i) in Regime I, the growth rate is always negative, thus the interface is stable; (ii) in Regime II, the growth rate remains zero (parallel cells), changes from negative to positive (converging cells), or from positive to negative (diverging cells), thus the interface (in)stability possibly changes type at some location in the cell; (iii) in Regime III, the growth rate is always positive, thus the interface is unstable. We conduct three-dimensional direct numerical simulations of the full Navier–Stokes equations, using a phase field method to enforce surface tension at the interface, to verify the theory and explore the effect of depth gradient on the interface (in)stability. We demonstrate that the depth gradient has only a slight influence in Regime I, and its effect is most pronounced in Regime III. Finally, we provide a critical discussion of the stability diagram derived from theoretical considerations versus the one obtained from direct numerical simulations.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11242-019-01371-2</doi><tpages>28</tpages><orcidid>https://orcid.org/0000-0002-5105-6173</orcidid><orcidid>https://orcid.org/0000-0001-8531-0531</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0169-3913
ispartof Transport in porous media, 2020-02, Vol.131 (3), p.907-934
issn 0169-3913
1573-1634
language eng
recordid cdi_proquest_journals_2350779642
source SpringerNature Journals
subjects Civil Engineering
Classical and Continuum Physics
Computational fluid dynamics
Computer simulation
Convergence
Dynamic stability
Earth and Environmental Science
Earth Sciences
Geotechnical Engineering & Applied Earth Sciences
Hydrogeology
Hydrology/Water Resources
Industrial Chemistry/Chemical Engineering
Interface stability
Stability analysis
Surface tension
title Computational Analysis of Interfacial Dynamics in Angled Hele-Shaw Cells: Instability Regimes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T20%3A54%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20Analysis%20of%20Interfacial%20Dynamics%20in%20Angled%20Hele-Shaw%20Cells:%20Instability%20Regimes&rft.jtitle=Transport%20in%20porous%20media&rft.au=Lu,%20Daihui&rft.date=2020-02-01&rft.volume=131&rft.issue=3&rft.spage=907&rft.epage=934&rft.pages=907-934&rft.issn=0169-3913&rft.eissn=1573-1634&rft_id=info:doi/10.1007/s11242-019-01371-2&rft_dat=%3Cproquest_cross%3E2350779642%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2350779642&rft_id=info:pmid/&rfr_iscdi=true