Benchmarking Popular Classification Models' Robustness to Random and Targeted Corruptions

Text classification models, especially neural networks based models, have reached very high accuracy on many popular benchmark datasets. Yet, such models when deployed in real world applications, tend to perform badly. The primary reason is that these models are not tested against sufficient real wo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2020-01
Hauptverfasser: Desai, Utkarsh, Tamilselvam, Srikanth, Kaur, Jassimran, Mani, Senthil, Khare, Shreya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!