Discrete relativistic positioning systems

We discuss the design for a discrete, immediate, simple relativistic positioning system (rPS) which is potentially able of self-positioning (up to isometries) and operating without calibration or ground control assistance. The design is discussed in 1 + 1 spacetimes, in Minkowski and Schwarzschild s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:General relativity and gravitation 2020-02, Vol.52 (2), Article 12
Hauptverfasser: Carloni, S., Fatibene, L., Ferraris, M., McLenaghan, R. G., Pinto, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title General relativity and gravitation
container_volume 52
creator Carloni, S.
Fatibene, L.
Ferraris, M.
McLenaghan, R. G.
Pinto, P.
description We discuss the design for a discrete, immediate, simple relativistic positioning system (rPS) which is potentially able of self-positioning (up to isometries) and operating without calibration or ground control assistance. The design is discussed in 1 + 1 spacetimes, in Minkowski and Schwarzschild solutions, as well as in 2 + 1 spacetimes in Minkowski. The system works without calibration, i.e. clock synchronizations, or prior knowledge about the motion of clocks, it is robust , i.e. it is able to test hypotheses break down (for example, if one or more clocks temporarily become not-freely falling, or the gravitational field changes), and then it is automatically back and operational when the assumed conditions are restored. In the Schwarzschild case, we also check that the system can best fit the gravitational mass of the source of the gravitational field. We stress that no weak field assumptions are made anywhere. In particular, the rPS we propose can work in a region close to the horizon since it does not use approximations or PPN expansions. More generally, the rPS can be adapted as detectors for the gravitational field and we shall briefly discuss their role in testing different theoretical settings for gravity. In fact, rPS is a natural candidate for a canonical method to extract observables out of a gravitational theory, an activity also known as designing experiments to test gravity .
doi_str_mv 10.1007/s10714-020-2660-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2350394383</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2350394383</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-bf783fccd1df73a3f92201d8255ef1520ccb09ca6e68e33577f5a6f0912f6e3</originalsourceid><addsrcrecordid>eNp1kE1LAzEURYMoWKs_wN2AKxfR95ImmSylfkLBhe7DNJOUlHam5qVC_71TRnDl6nHhnvvgMHaNcIcA5p4QDM44COBCa-D2hE1QGcGtkuKUTQAAuTGA5-yCaD1Ea7SZsNvHRD6HEqocNk1J34lK8tWup1RS36VuVdGBStjSJTuLzYbC1e-dso_np8_5K1-8v7zNHxbcS2ULX0ZTy-h9i200spHRCgHY1kKpEFEJ8H4J1jc66DpIqYyJqtERLIqog5yym3F1l_uvfaDi1v0-d8NDJ6QCaWeylkMLx5bPPVEO0e1y2jb54BDc0YcbfbjBhzv6cHZgxMjQ0O1WIf8t_w_9AOhLYlw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2350394383</pqid></control><display><type>article</type><title>Discrete relativistic positioning systems</title><source>Springer Nature - Complete Springer Journals</source><creator>Carloni, S. ; Fatibene, L. ; Ferraris, M. ; McLenaghan, R. G. ; Pinto, P.</creator><creatorcontrib>Carloni, S. ; Fatibene, L. ; Ferraris, M. ; McLenaghan, R. G. ; Pinto, P.</creatorcontrib><description>We discuss the design for a discrete, immediate, simple relativistic positioning system (rPS) which is potentially able of self-positioning (up to isometries) and operating without calibration or ground control assistance. The design is discussed in 1 + 1 spacetimes, in Minkowski and Schwarzschild solutions, as well as in 2 + 1 spacetimes in Minkowski. The system works without calibration, i.e. clock synchronizations, or prior knowledge about the motion of clocks, it is robust , i.e. it is able to test hypotheses break down (for example, if one or more clocks temporarily become not-freely falling, or the gravitational field changes), and then it is automatically back and operational when the assumed conditions are restored. In the Schwarzschild case, we also check that the system can best fit the gravitational mass of the source of the gravitational field. We stress that no weak field assumptions are made anywhere. In particular, the rPS we propose can work in a region close to the horizon since it does not use approximations or PPN expansions. More generally, the rPS can be adapted as detectors for the gravitational field and we shall briefly discuss their role in testing different theoretical settings for gravity. In fact, rPS is a natural candidate for a canonical method to extract observables out of a gravitational theory, an activity also known as designing experiments to test gravity .</description><identifier>ISSN: 0001-7701</identifier><identifier>EISSN: 1572-9532</identifier><identifier>DOI: 10.1007/s10714-020-2660-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Astronomy ; Astrophysics and Cosmology ; Calibration ; Classical and Quantum Gravitation ; Clocks ; Differential Geometry ; Gravitation theory ; Gravitational fields ; Gravity ; Mathematical and Computational Physics ; Physics ; Physics and Astronomy ; Quantum Physics ; Relativism ; Relativistic effects ; Relativity Theory ; Research Article ; Spacetime ; Theoretical</subject><ispartof>General relativity and gravitation, 2020-02, Vol.52 (2), Article 12</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>2020© Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-bf783fccd1df73a3f92201d8255ef1520ccb09ca6e68e33577f5a6f0912f6e3</citedby><cites>FETCH-LOGICAL-c359t-bf783fccd1df73a3f92201d8255ef1520ccb09ca6e68e33577f5a6f0912f6e3</cites><orcidid>0000-0003-2373-2653</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10714-020-2660-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10714-020-2660-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Carloni, S.</creatorcontrib><creatorcontrib>Fatibene, L.</creatorcontrib><creatorcontrib>Ferraris, M.</creatorcontrib><creatorcontrib>McLenaghan, R. G.</creatorcontrib><creatorcontrib>Pinto, P.</creatorcontrib><title>Discrete relativistic positioning systems</title><title>General relativity and gravitation</title><addtitle>Gen Relativ Gravit</addtitle><description>We discuss the design for a discrete, immediate, simple relativistic positioning system (rPS) which is potentially able of self-positioning (up to isometries) and operating without calibration or ground control assistance. The design is discussed in 1 + 1 spacetimes, in Minkowski and Schwarzschild solutions, as well as in 2 + 1 spacetimes in Minkowski. The system works without calibration, i.e. clock synchronizations, or prior knowledge about the motion of clocks, it is robust , i.e. it is able to test hypotheses break down (for example, if one or more clocks temporarily become not-freely falling, or the gravitational field changes), and then it is automatically back and operational when the assumed conditions are restored. In the Schwarzschild case, we also check that the system can best fit the gravitational mass of the source of the gravitational field. We stress that no weak field assumptions are made anywhere. In particular, the rPS we propose can work in a region close to the horizon since it does not use approximations or PPN expansions. More generally, the rPS can be adapted as detectors for the gravitational field and we shall briefly discuss their role in testing different theoretical settings for gravity. In fact, rPS is a natural candidate for a canonical method to extract observables out of a gravitational theory, an activity also known as designing experiments to test gravity .</description><subject>Astronomy</subject><subject>Astrophysics and Cosmology</subject><subject>Calibration</subject><subject>Classical and Quantum Gravitation</subject><subject>Clocks</subject><subject>Differential Geometry</subject><subject>Gravitation theory</subject><subject>Gravitational fields</subject><subject>Gravity</subject><subject>Mathematical and Computational Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Relativism</subject><subject>Relativistic effects</subject><subject>Relativity Theory</subject><subject>Research Article</subject><subject>Spacetime</subject><subject>Theoretical</subject><issn>0001-7701</issn><issn>1572-9532</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEURYMoWKs_wN2AKxfR95ImmSylfkLBhe7DNJOUlHam5qVC_71TRnDl6nHhnvvgMHaNcIcA5p4QDM44COBCa-D2hE1QGcGtkuKUTQAAuTGA5-yCaD1Ea7SZsNvHRD6HEqocNk1J34lK8tWup1RS36VuVdGBStjSJTuLzYbC1e-dso_np8_5K1-8v7zNHxbcS2ULX0ZTy-h9i200spHRCgHY1kKpEFEJ8H4J1jc66DpIqYyJqtERLIqog5yym3F1l_uvfaDi1v0-d8NDJ6QCaWeylkMLx5bPPVEO0e1y2jb54BDc0YcbfbjBhzv6cHZgxMjQ0O1WIf8t_w_9AOhLYlw</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Carloni, S.</creator><creator>Fatibene, L.</creator><creator>Ferraris, M.</creator><creator>McLenaghan, R. G.</creator><creator>Pinto, P.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2373-2653</orcidid></search><sort><creationdate>20200201</creationdate><title>Discrete relativistic positioning systems</title><author>Carloni, S. ; Fatibene, L. ; Ferraris, M. ; McLenaghan, R. G. ; Pinto, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-bf783fccd1df73a3f92201d8255ef1520ccb09ca6e68e33577f5a6f0912f6e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Astronomy</topic><topic>Astrophysics and Cosmology</topic><topic>Calibration</topic><topic>Classical and Quantum Gravitation</topic><topic>Clocks</topic><topic>Differential Geometry</topic><topic>Gravitation theory</topic><topic>Gravitational fields</topic><topic>Gravity</topic><topic>Mathematical and Computational Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Relativism</topic><topic>Relativistic effects</topic><topic>Relativity Theory</topic><topic>Research Article</topic><topic>Spacetime</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carloni, S.</creatorcontrib><creatorcontrib>Fatibene, L.</creatorcontrib><creatorcontrib>Ferraris, M.</creatorcontrib><creatorcontrib>McLenaghan, R. G.</creatorcontrib><creatorcontrib>Pinto, P.</creatorcontrib><collection>CrossRef</collection><jtitle>General relativity and gravitation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carloni, S.</au><au>Fatibene, L.</au><au>Ferraris, M.</au><au>McLenaghan, R. G.</au><au>Pinto, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discrete relativistic positioning systems</atitle><jtitle>General relativity and gravitation</jtitle><stitle>Gen Relativ Gravit</stitle><date>2020-02-01</date><risdate>2020</risdate><volume>52</volume><issue>2</issue><artnum>12</artnum><issn>0001-7701</issn><eissn>1572-9532</eissn><abstract>We discuss the design for a discrete, immediate, simple relativistic positioning system (rPS) which is potentially able of self-positioning (up to isometries) and operating without calibration or ground control assistance. The design is discussed in 1 + 1 spacetimes, in Minkowski and Schwarzschild solutions, as well as in 2 + 1 spacetimes in Minkowski. The system works without calibration, i.e. clock synchronizations, or prior knowledge about the motion of clocks, it is robust , i.e. it is able to test hypotheses break down (for example, if one or more clocks temporarily become not-freely falling, or the gravitational field changes), and then it is automatically back and operational when the assumed conditions are restored. In the Schwarzschild case, we also check that the system can best fit the gravitational mass of the source of the gravitational field. We stress that no weak field assumptions are made anywhere. In particular, the rPS we propose can work in a region close to the horizon since it does not use approximations or PPN expansions. More generally, the rPS can be adapted as detectors for the gravitational field and we shall briefly discuss their role in testing different theoretical settings for gravity. In fact, rPS is a natural candidate for a canonical method to extract observables out of a gravitational theory, an activity also known as designing experiments to test gravity .</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10714-020-2660-9</doi><orcidid>https://orcid.org/0000-0003-2373-2653</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0001-7701
ispartof General relativity and gravitation, 2020-02, Vol.52 (2), Article 12
issn 0001-7701
1572-9532
language eng
recordid cdi_proquest_journals_2350394383
source Springer Nature - Complete Springer Journals
subjects Astronomy
Astrophysics and Cosmology
Calibration
Classical and Quantum Gravitation
Clocks
Differential Geometry
Gravitation theory
Gravitational fields
Gravity
Mathematical and Computational Physics
Physics
Physics and Astronomy
Quantum Physics
Relativism
Relativistic effects
Relativity Theory
Research Article
Spacetime
Theoretical
title Discrete relativistic positioning systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T19%3A27%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discrete%20relativistic%20positioning%20systems&rft.jtitle=General%20relativity%20and%20gravitation&rft.au=Carloni,%20S.&rft.date=2020-02-01&rft.volume=52&rft.issue=2&rft.artnum=12&rft.issn=0001-7701&rft.eissn=1572-9532&rft_id=info:doi/10.1007/s10714-020-2660-9&rft_dat=%3Cproquest_cross%3E2350394383%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2350394383&rft_id=info:pmid/&rfr_iscdi=true