Discrete relativistic positioning systems
We discuss the design for a discrete, immediate, simple relativistic positioning system (rPS) which is potentially able of self-positioning (up to isometries) and operating without calibration or ground control assistance. The design is discussed in 1 + 1 spacetimes, in Minkowski and Schwarzschild s...
Gespeichert in:
Veröffentlicht in: | General relativity and gravitation 2020-02, Vol.52 (2), Article 12 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | |
container_title | General relativity and gravitation |
container_volume | 52 |
creator | Carloni, S. Fatibene, L. Ferraris, M. McLenaghan, R. G. Pinto, P. |
description | We discuss the design for a discrete, immediate, simple relativistic positioning system (rPS) which is potentially able of self-positioning (up to isometries) and operating without calibration or ground control assistance. The design is discussed in 1 + 1 spacetimes, in Minkowski and Schwarzschild solutions, as well as in 2 + 1 spacetimes in Minkowski. The system works without calibration, i.e. clock synchronizations, or prior knowledge about the motion of clocks, it is
robust
, i.e. it is able to test hypotheses break down (for example, if one or more clocks temporarily become not-freely falling, or the gravitational field changes), and then it is automatically back and operational when the assumed conditions are restored. In the Schwarzschild case, we also check that the system can best fit the gravitational mass of the source of the gravitational field. We stress that no weak field assumptions are made anywhere. In particular, the rPS we propose can work in a region close to the horizon since it does not use approximations or PPN expansions. More generally, the rPS can be adapted as detectors for the gravitational field and we shall briefly discuss their role in testing different theoretical settings for gravity. In fact, rPS is a natural candidate for a canonical method to extract observables out of a gravitational theory, an activity also known as
designing experiments to test gravity
. |
doi_str_mv | 10.1007/s10714-020-2660-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2350394383</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2350394383</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-bf783fccd1df73a3f92201d8255ef1520ccb09ca6e68e33577f5a6f0912f6e3</originalsourceid><addsrcrecordid>eNp1kE1LAzEURYMoWKs_wN2AKxfR95ImmSylfkLBhe7DNJOUlHam5qVC_71TRnDl6nHhnvvgMHaNcIcA5p4QDM44COBCa-D2hE1QGcGtkuKUTQAAuTGA5-yCaD1Ea7SZsNvHRD6HEqocNk1J34lK8tWup1RS36VuVdGBStjSJTuLzYbC1e-dso_np8_5K1-8v7zNHxbcS2ULX0ZTy-h9i200spHRCgHY1kKpEFEJ8H4J1jc66DpIqYyJqtERLIqog5yym3F1l_uvfaDi1v0-d8NDJ6QCaWeylkMLx5bPPVEO0e1y2jb54BDc0YcbfbjBhzv6cHZgxMjQ0O1WIf8t_w_9AOhLYlw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2350394383</pqid></control><display><type>article</type><title>Discrete relativistic positioning systems</title><source>Springer Nature - Complete Springer Journals</source><creator>Carloni, S. ; Fatibene, L. ; Ferraris, M. ; McLenaghan, R. G. ; Pinto, P.</creator><creatorcontrib>Carloni, S. ; Fatibene, L. ; Ferraris, M. ; McLenaghan, R. G. ; Pinto, P.</creatorcontrib><description>We discuss the design for a discrete, immediate, simple relativistic positioning system (rPS) which is potentially able of self-positioning (up to isometries) and operating without calibration or ground control assistance. The design is discussed in 1 + 1 spacetimes, in Minkowski and Schwarzschild solutions, as well as in 2 + 1 spacetimes in Minkowski. The system works without calibration, i.e. clock synchronizations, or prior knowledge about the motion of clocks, it is
robust
, i.e. it is able to test hypotheses break down (for example, if one or more clocks temporarily become not-freely falling, or the gravitational field changes), and then it is automatically back and operational when the assumed conditions are restored. In the Schwarzschild case, we also check that the system can best fit the gravitational mass of the source of the gravitational field. We stress that no weak field assumptions are made anywhere. In particular, the rPS we propose can work in a region close to the horizon since it does not use approximations or PPN expansions. More generally, the rPS can be adapted as detectors for the gravitational field and we shall briefly discuss their role in testing different theoretical settings for gravity. In fact, rPS is a natural candidate for a canonical method to extract observables out of a gravitational theory, an activity also known as
designing experiments to test gravity
.</description><identifier>ISSN: 0001-7701</identifier><identifier>EISSN: 1572-9532</identifier><identifier>DOI: 10.1007/s10714-020-2660-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Astronomy ; Astrophysics and Cosmology ; Calibration ; Classical and Quantum Gravitation ; Clocks ; Differential Geometry ; Gravitation theory ; Gravitational fields ; Gravity ; Mathematical and Computational Physics ; Physics ; Physics and Astronomy ; Quantum Physics ; Relativism ; Relativistic effects ; Relativity Theory ; Research Article ; Spacetime ; Theoretical</subject><ispartof>General relativity and gravitation, 2020-02, Vol.52 (2), Article 12</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>2020© Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-bf783fccd1df73a3f92201d8255ef1520ccb09ca6e68e33577f5a6f0912f6e3</citedby><cites>FETCH-LOGICAL-c359t-bf783fccd1df73a3f92201d8255ef1520ccb09ca6e68e33577f5a6f0912f6e3</cites><orcidid>0000-0003-2373-2653</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10714-020-2660-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10714-020-2660-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Carloni, S.</creatorcontrib><creatorcontrib>Fatibene, L.</creatorcontrib><creatorcontrib>Ferraris, M.</creatorcontrib><creatorcontrib>McLenaghan, R. G.</creatorcontrib><creatorcontrib>Pinto, P.</creatorcontrib><title>Discrete relativistic positioning systems</title><title>General relativity and gravitation</title><addtitle>Gen Relativ Gravit</addtitle><description>We discuss the design for a discrete, immediate, simple relativistic positioning system (rPS) which is potentially able of self-positioning (up to isometries) and operating without calibration or ground control assistance. The design is discussed in 1 + 1 spacetimes, in Minkowski and Schwarzschild solutions, as well as in 2 + 1 spacetimes in Minkowski. The system works without calibration, i.e. clock synchronizations, or prior knowledge about the motion of clocks, it is
robust
, i.e. it is able to test hypotheses break down (for example, if one or more clocks temporarily become not-freely falling, or the gravitational field changes), and then it is automatically back and operational when the assumed conditions are restored. In the Schwarzschild case, we also check that the system can best fit the gravitational mass of the source of the gravitational field. We stress that no weak field assumptions are made anywhere. In particular, the rPS we propose can work in a region close to the horizon since it does not use approximations or PPN expansions. More generally, the rPS can be adapted as detectors for the gravitational field and we shall briefly discuss their role in testing different theoretical settings for gravity. In fact, rPS is a natural candidate for a canonical method to extract observables out of a gravitational theory, an activity also known as
designing experiments to test gravity
.</description><subject>Astronomy</subject><subject>Astrophysics and Cosmology</subject><subject>Calibration</subject><subject>Classical and Quantum Gravitation</subject><subject>Clocks</subject><subject>Differential Geometry</subject><subject>Gravitation theory</subject><subject>Gravitational fields</subject><subject>Gravity</subject><subject>Mathematical and Computational Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Relativism</subject><subject>Relativistic effects</subject><subject>Relativity Theory</subject><subject>Research Article</subject><subject>Spacetime</subject><subject>Theoretical</subject><issn>0001-7701</issn><issn>1572-9532</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEURYMoWKs_wN2AKxfR95ImmSylfkLBhe7DNJOUlHam5qVC_71TRnDl6nHhnvvgMHaNcIcA5p4QDM44COBCa-D2hE1QGcGtkuKUTQAAuTGA5-yCaD1Ea7SZsNvHRD6HEqocNk1J34lK8tWup1RS36VuVdGBStjSJTuLzYbC1e-dso_np8_5K1-8v7zNHxbcS2ULX0ZTy-h9i200spHRCgHY1kKpEFEJ8H4J1jc66DpIqYyJqtERLIqog5yym3F1l_uvfaDi1v0-d8NDJ6QCaWeylkMLx5bPPVEO0e1y2jb54BDc0YcbfbjBhzv6cHZgxMjQ0O1WIf8t_w_9AOhLYlw</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Carloni, S.</creator><creator>Fatibene, L.</creator><creator>Ferraris, M.</creator><creator>McLenaghan, R. G.</creator><creator>Pinto, P.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2373-2653</orcidid></search><sort><creationdate>20200201</creationdate><title>Discrete relativistic positioning systems</title><author>Carloni, S. ; Fatibene, L. ; Ferraris, M. ; McLenaghan, R. G. ; Pinto, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-bf783fccd1df73a3f92201d8255ef1520ccb09ca6e68e33577f5a6f0912f6e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Astronomy</topic><topic>Astrophysics and Cosmology</topic><topic>Calibration</topic><topic>Classical and Quantum Gravitation</topic><topic>Clocks</topic><topic>Differential Geometry</topic><topic>Gravitation theory</topic><topic>Gravitational fields</topic><topic>Gravity</topic><topic>Mathematical and Computational Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Relativism</topic><topic>Relativistic effects</topic><topic>Relativity Theory</topic><topic>Research Article</topic><topic>Spacetime</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carloni, S.</creatorcontrib><creatorcontrib>Fatibene, L.</creatorcontrib><creatorcontrib>Ferraris, M.</creatorcontrib><creatorcontrib>McLenaghan, R. G.</creatorcontrib><creatorcontrib>Pinto, P.</creatorcontrib><collection>CrossRef</collection><jtitle>General relativity and gravitation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carloni, S.</au><au>Fatibene, L.</au><au>Ferraris, M.</au><au>McLenaghan, R. G.</au><au>Pinto, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discrete relativistic positioning systems</atitle><jtitle>General relativity and gravitation</jtitle><stitle>Gen Relativ Gravit</stitle><date>2020-02-01</date><risdate>2020</risdate><volume>52</volume><issue>2</issue><artnum>12</artnum><issn>0001-7701</issn><eissn>1572-9532</eissn><abstract>We discuss the design for a discrete, immediate, simple relativistic positioning system (rPS) which is potentially able of self-positioning (up to isometries) and operating without calibration or ground control assistance. The design is discussed in 1 + 1 spacetimes, in Minkowski and Schwarzschild solutions, as well as in 2 + 1 spacetimes in Minkowski. The system works without calibration, i.e. clock synchronizations, or prior knowledge about the motion of clocks, it is
robust
, i.e. it is able to test hypotheses break down (for example, if one or more clocks temporarily become not-freely falling, or the gravitational field changes), and then it is automatically back and operational when the assumed conditions are restored. In the Schwarzschild case, we also check that the system can best fit the gravitational mass of the source of the gravitational field. We stress that no weak field assumptions are made anywhere. In particular, the rPS we propose can work in a region close to the horizon since it does not use approximations or PPN expansions. More generally, the rPS can be adapted as detectors for the gravitational field and we shall briefly discuss their role in testing different theoretical settings for gravity. In fact, rPS is a natural candidate for a canonical method to extract observables out of a gravitational theory, an activity also known as
designing experiments to test gravity
.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10714-020-2660-9</doi><orcidid>https://orcid.org/0000-0003-2373-2653</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-7701 |
ispartof | General relativity and gravitation, 2020-02, Vol.52 (2), Article 12 |
issn | 0001-7701 1572-9532 |
language | eng |
recordid | cdi_proquest_journals_2350394383 |
source | Springer Nature - Complete Springer Journals |
subjects | Astronomy Astrophysics and Cosmology Calibration Classical and Quantum Gravitation Clocks Differential Geometry Gravitation theory Gravitational fields Gravity Mathematical and Computational Physics Physics Physics and Astronomy Quantum Physics Relativism Relativistic effects Relativity Theory Research Article Spacetime Theoretical |
title | Discrete relativistic positioning systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T19%3A27%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discrete%20relativistic%20positioning%20systems&rft.jtitle=General%20relativity%20and%20gravitation&rft.au=Carloni,%20S.&rft.date=2020-02-01&rft.volume=52&rft.issue=2&rft.artnum=12&rft.issn=0001-7701&rft.eissn=1572-9532&rft_id=info:doi/10.1007/s10714-020-2660-9&rft_dat=%3Cproquest_cross%3E2350394383%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2350394383&rft_id=info:pmid/&rfr_iscdi=true |