High glass transition temperature shape‐memory materials: Hydroxyl‐terminated polydimethylsiloxane‐modified cyanate ester
ABSTRACT Hydroxyl‐terminated polydimethylsiloxane (HTPDMS) and hydrogenated bisphenol A‐type epoxy resin (AL‐3040) were coreacted with a silane coupling agent (KH‐550) to form an AL‐3040 epoxy resin–HTPDMS block copolymer. Then, the copolymer was used as a compatibilizer to modify cyanate ester with...
Gespeichert in:
Veröffentlicht in: | Journal of applied polymer science 2020-05, Vol.137 (18), p.n/a |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 18 |
container_start_page | |
container_title | Journal of applied polymer science |
container_volume | 137 |
creator | Li, Zhihua Hu, Jiankang Ma, Li Liu, Hongxin |
description | ABSTRACT
Hydroxyl‐terminated polydimethylsiloxane (HTPDMS) and hydrogenated bisphenol A‐type epoxy resin (AL‐3040) were coreacted with a silane coupling agent (KH‐550) to form an AL‐3040 epoxy resin–HTPDMS block copolymer. Then, the copolymer was used as a compatibilizer to modify cyanate ester with different mass ratios. Subsequently, the blend was cured to form HTPDMS‐modified shape‐memory cyanate ester. The soft Si─O─Si segments of HTPDMS act as a flexible unit that can be grafted with the crosslinked triazine structures of cyanate ester. It was excellent for the toughening modification of cyanate ester. With increasing mass ratio of compatibilizer and cyanate ester, the tensile strength and glass transition temperature (T
g) of HTPDMS‐modified cyanate ester were decreased, whereas impact strength and elongation at break were increased. The shape‐memory tests exhibited that HTPDMS‐modified cyanate ester systems have excellent shape‐memory properties with a shape recovery rate of >96% and shape fixity rate of >97% and a recovery time of less than 110 s. Furthermore, Thermo‐Gravimetric Analyzer (TGA) tests showed that HTPDMS‐modified cyanate ester exhibited good thermal stability; the temperature of 10% mass loss was high at 365 °C. The char yield was increased with increasing contents of compatibilizer at 800°C. Therefore, HTPDMS modified cyanate ester exhibited much better heat resistance at high temperature. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020, 137, 48641. |
doi_str_mv | 10.1002/app.48641 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2350200646</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2350200646</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3341-8436ad31b723bafab137d0f6a76390726f9bf5f05223b69fac7b09520ca59cdb3</originalsourceid><addsrcrecordid>eNp1kL1OwzAURi0EEqUw8AaWmBjS-idxaraqAopUiQ4wW05it66SONipwBM8As_Ik-A2rEyWfM5379UHwDVGE4wQmcqum6QzluITMMKI50nKyOwUjCLDyYzz7BxceL9DCOMMsRH4XJrNFm5q6T3snWy96Y1tYa-aTjnZ752Cfis79fP13ajGugAb2StnZO3v4DJUzn6EOsL415g2ogp2tg6VaVS_DbU3tf2Q7TFuK6NN5GWQBxEqH0OX4EzHWerq7x2D14f7l8UyWT0_Pi3mq6SkNI2Xp5TJiuIiJ7SQWhaY5hXSTOaMcpQTpnmhM40yEjnjWpZ5gXhGUCkzXlYFHYObYW7n7Ns-rhY7u3dtXCkIzRBBiKUsWreDVTrrvVNadM400gWBkTj0K2K_4thvdKeD-25qFf4XxXy9HhK_ocqDOg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2350200646</pqid></control><display><type>article</type><title>High glass transition temperature shape‐memory materials: Hydroxyl‐terminated polydimethylsiloxane‐modified cyanate ester</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Li, Zhihua ; Hu, Jiankang ; Ma, Li ; Liu, Hongxin</creator><creatorcontrib>Li, Zhihua ; Hu, Jiankang ; Ma, Li ; Liu, Hongxin</creatorcontrib><description>ABSTRACT
Hydroxyl‐terminated polydimethylsiloxane (HTPDMS) and hydrogenated bisphenol A‐type epoxy resin (AL‐3040) were coreacted with a silane coupling agent (KH‐550) to form an AL‐3040 epoxy resin–HTPDMS block copolymer. Then, the copolymer was used as a compatibilizer to modify cyanate ester with different mass ratios. Subsequently, the blend was cured to form HTPDMS‐modified shape‐memory cyanate ester. The soft Si─O─Si segments of HTPDMS act as a flexible unit that can be grafted with the crosslinked triazine structures of cyanate ester. It was excellent for the toughening modification of cyanate ester. With increasing mass ratio of compatibilizer and cyanate ester, the tensile strength and glass transition temperature (T
g) of HTPDMS‐modified cyanate ester were decreased, whereas impact strength and elongation at break were increased. The shape‐memory tests exhibited that HTPDMS‐modified cyanate ester systems have excellent shape‐memory properties with a shape recovery rate of >96% and shape fixity rate of >97% and a recovery time of less than 110 s. Furthermore, Thermo‐Gravimetric Analyzer (TGA) tests showed that HTPDMS‐modified cyanate ester exhibited good thermal stability; the temperature of 10% mass loss was high at 365 °C. The char yield was increased with increasing contents of compatibilizer at 800°C. Therefore, HTPDMS modified cyanate ester exhibited much better heat resistance at high temperature. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020, 137, 48641.</description><identifier>ISSN: 0021-8995</identifier><identifier>EISSN: 1097-4628</identifier><identifier>DOI: 10.1002/app.48641</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Bisphenol A ; Block copolymers ; Compatibility ; Coupling agents ; Crosslinking ; Cyanates ; Elongation ; Epoxy resins ; Glass transition temperature ; Gravimetric analysis ; Heat resistance ; High temperature ; Hydroxyl‐terminated polydimethylsiloxane ; Impact strength ; Mass ratios ; Materials science ; Polydimethylsiloxane ; Polymers ; Recovery time ; Shape memory ; Shape memory cyanate ester ; Temperature ; Tensile strength ; Thermal resistance ; Thermal stability ; Toughening modification</subject><ispartof>Journal of applied polymer science, 2020-05, Vol.137 (18), p.n/a</ispartof><rights>2019 Wiley Periodicals, Inc.</rights><rights>2020 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3341-8436ad31b723bafab137d0f6a76390726f9bf5f05223b69fac7b09520ca59cdb3</citedby><cites>FETCH-LOGICAL-c3341-8436ad31b723bafab137d0f6a76390726f9bf5f05223b69fac7b09520ca59cdb3</cites><orcidid>0000-0001-9630-3644</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fapp.48641$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fapp.48641$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27911,27912,45561,45562</link.rule.ids></links><search><creatorcontrib>Li, Zhihua</creatorcontrib><creatorcontrib>Hu, Jiankang</creatorcontrib><creatorcontrib>Ma, Li</creatorcontrib><creatorcontrib>Liu, Hongxin</creatorcontrib><title>High glass transition temperature shape‐memory materials: Hydroxyl‐terminated polydimethylsiloxane‐modified cyanate ester</title><title>Journal of applied polymer science</title><description>ABSTRACT
Hydroxyl‐terminated polydimethylsiloxane (HTPDMS) and hydrogenated bisphenol A‐type epoxy resin (AL‐3040) were coreacted with a silane coupling agent (KH‐550) to form an AL‐3040 epoxy resin–HTPDMS block copolymer. Then, the copolymer was used as a compatibilizer to modify cyanate ester with different mass ratios. Subsequently, the blend was cured to form HTPDMS‐modified shape‐memory cyanate ester. The soft Si─O─Si segments of HTPDMS act as a flexible unit that can be grafted with the crosslinked triazine structures of cyanate ester. It was excellent for the toughening modification of cyanate ester. With increasing mass ratio of compatibilizer and cyanate ester, the tensile strength and glass transition temperature (T
g) of HTPDMS‐modified cyanate ester were decreased, whereas impact strength and elongation at break were increased. The shape‐memory tests exhibited that HTPDMS‐modified cyanate ester systems have excellent shape‐memory properties with a shape recovery rate of >96% and shape fixity rate of >97% and a recovery time of less than 110 s. Furthermore, Thermo‐Gravimetric Analyzer (TGA) tests showed that HTPDMS‐modified cyanate ester exhibited good thermal stability; the temperature of 10% mass loss was high at 365 °C. The char yield was increased with increasing contents of compatibilizer at 800°C. Therefore, HTPDMS modified cyanate ester exhibited much better heat resistance at high temperature. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020, 137, 48641.</description><subject>Bisphenol A</subject><subject>Block copolymers</subject><subject>Compatibility</subject><subject>Coupling agents</subject><subject>Crosslinking</subject><subject>Cyanates</subject><subject>Elongation</subject><subject>Epoxy resins</subject><subject>Glass transition temperature</subject><subject>Gravimetric analysis</subject><subject>Heat resistance</subject><subject>High temperature</subject><subject>Hydroxyl‐terminated polydimethylsiloxane</subject><subject>Impact strength</subject><subject>Mass ratios</subject><subject>Materials science</subject><subject>Polydimethylsiloxane</subject><subject>Polymers</subject><subject>Recovery time</subject><subject>Shape memory</subject><subject>Shape memory cyanate ester</subject><subject>Temperature</subject><subject>Tensile strength</subject><subject>Thermal resistance</subject><subject>Thermal stability</subject><subject>Toughening modification</subject><issn>0021-8995</issn><issn>1097-4628</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kL1OwzAURi0EEqUw8AaWmBjS-idxaraqAopUiQ4wW05it66SONipwBM8As_Ik-A2rEyWfM5379UHwDVGE4wQmcqum6QzluITMMKI50nKyOwUjCLDyYzz7BxceL9DCOMMsRH4XJrNFm5q6T3snWy96Y1tYa-aTjnZ752Cfis79fP13ajGugAb2StnZO3v4DJUzn6EOsL415g2ogp2tg6VaVS_DbU3tf2Q7TFuK6NN5GWQBxEqH0OX4EzHWerq7x2D14f7l8UyWT0_Pi3mq6SkNI2Xp5TJiuIiJ7SQWhaY5hXSTOaMcpQTpnmhM40yEjnjWpZ5gXhGUCkzXlYFHYObYW7n7Ns-rhY7u3dtXCkIzRBBiKUsWreDVTrrvVNadM400gWBkTj0K2K_4thvdKeD-25qFf4XxXy9HhK_ocqDOg</recordid><startdate>20200510</startdate><enddate>20200510</enddate><creator>Li, Zhihua</creator><creator>Hu, Jiankang</creator><creator>Ma, Li</creator><creator>Liu, Hongxin</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-9630-3644</orcidid></search><sort><creationdate>20200510</creationdate><title>High glass transition temperature shape‐memory materials: Hydroxyl‐terminated polydimethylsiloxane‐modified cyanate ester</title><author>Li, Zhihua ; Hu, Jiankang ; Ma, Li ; Liu, Hongxin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3341-8436ad31b723bafab137d0f6a76390726f9bf5f05223b69fac7b09520ca59cdb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bisphenol A</topic><topic>Block copolymers</topic><topic>Compatibility</topic><topic>Coupling agents</topic><topic>Crosslinking</topic><topic>Cyanates</topic><topic>Elongation</topic><topic>Epoxy resins</topic><topic>Glass transition temperature</topic><topic>Gravimetric analysis</topic><topic>Heat resistance</topic><topic>High temperature</topic><topic>Hydroxyl‐terminated polydimethylsiloxane</topic><topic>Impact strength</topic><topic>Mass ratios</topic><topic>Materials science</topic><topic>Polydimethylsiloxane</topic><topic>Polymers</topic><topic>Recovery time</topic><topic>Shape memory</topic><topic>Shape memory cyanate ester</topic><topic>Temperature</topic><topic>Tensile strength</topic><topic>Thermal resistance</topic><topic>Thermal stability</topic><topic>Toughening modification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Zhihua</creatorcontrib><creatorcontrib>Hu, Jiankang</creatorcontrib><creatorcontrib>Ma, Li</creatorcontrib><creatorcontrib>Liu, Hongxin</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of applied polymer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Zhihua</au><au>Hu, Jiankang</au><au>Ma, Li</au><au>Liu, Hongxin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High glass transition temperature shape‐memory materials: Hydroxyl‐terminated polydimethylsiloxane‐modified cyanate ester</atitle><jtitle>Journal of applied polymer science</jtitle><date>2020-05-10</date><risdate>2020</risdate><volume>137</volume><issue>18</issue><epage>n/a</epage><issn>0021-8995</issn><eissn>1097-4628</eissn><abstract>ABSTRACT
Hydroxyl‐terminated polydimethylsiloxane (HTPDMS) and hydrogenated bisphenol A‐type epoxy resin (AL‐3040) were coreacted with a silane coupling agent (KH‐550) to form an AL‐3040 epoxy resin–HTPDMS block copolymer. Then, the copolymer was used as a compatibilizer to modify cyanate ester with different mass ratios. Subsequently, the blend was cured to form HTPDMS‐modified shape‐memory cyanate ester. The soft Si─O─Si segments of HTPDMS act as a flexible unit that can be grafted with the crosslinked triazine structures of cyanate ester. It was excellent for the toughening modification of cyanate ester. With increasing mass ratio of compatibilizer and cyanate ester, the tensile strength and glass transition temperature (T
g) of HTPDMS‐modified cyanate ester were decreased, whereas impact strength and elongation at break were increased. The shape‐memory tests exhibited that HTPDMS‐modified cyanate ester systems have excellent shape‐memory properties with a shape recovery rate of >96% and shape fixity rate of >97% and a recovery time of less than 110 s. Furthermore, Thermo‐Gravimetric Analyzer (TGA) tests showed that HTPDMS‐modified cyanate ester exhibited good thermal stability; the temperature of 10% mass loss was high at 365 °C. The char yield was increased with increasing contents of compatibilizer at 800°C. Therefore, HTPDMS modified cyanate ester exhibited much better heat resistance at high temperature. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020, 137, 48641.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/app.48641</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-9630-3644</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8995 |
ispartof | Journal of applied polymer science, 2020-05, Vol.137 (18), p.n/a |
issn | 0021-8995 1097-4628 |
language | eng |
recordid | cdi_proquest_journals_2350200646 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Bisphenol A Block copolymers Compatibility Coupling agents Crosslinking Cyanates Elongation Epoxy resins Glass transition temperature Gravimetric analysis Heat resistance High temperature Hydroxyl‐terminated polydimethylsiloxane Impact strength Mass ratios Materials science Polydimethylsiloxane Polymers Recovery time Shape memory Shape memory cyanate ester Temperature Tensile strength Thermal resistance Thermal stability Toughening modification |
title | High glass transition temperature shape‐memory materials: Hydroxyl‐terminated polydimethylsiloxane‐modified cyanate ester |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T22%3A29%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20glass%20transition%20temperature%20shape%E2%80%90memory%20materials:%20Hydroxyl%E2%80%90terminated%20polydimethylsiloxane%E2%80%90modified%20cyanate%20ester&rft.jtitle=Journal%20of%20applied%20polymer%20science&rft.au=Li,%20Zhihua&rft.date=2020-05-10&rft.volume=137&rft.issue=18&rft.epage=n/a&rft.issn=0021-8995&rft.eissn=1097-4628&rft_id=info:doi/10.1002/app.48641&rft_dat=%3Cproquest_cross%3E2350200646%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2350200646&rft_id=info:pmid/&rfr_iscdi=true |