High glass transition temperature shape‐memory materials: Hydroxyl‐terminated polydimethylsiloxane‐modified cyanate ester

ABSTRACT Hydroxyl‐terminated polydimethylsiloxane (HTPDMS) and hydrogenated bisphenol A‐type epoxy resin (AL‐3040) were coreacted with a silane coupling agent (KH‐550) to form an AL‐3040 epoxy resin–HTPDMS block copolymer. Then, the copolymer was used as a compatibilizer to modify cyanate ester with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied polymer science 2020-05, Vol.137 (18), p.n/a
Hauptverfasser: Li, Zhihua, Hu, Jiankang, Ma, Li, Liu, Hongxin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 18
container_start_page
container_title Journal of applied polymer science
container_volume 137
creator Li, Zhihua
Hu, Jiankang
Ma, Li
Liu, Hongxin
description ABSTRACT Hydroxyl‐terminated polydimethylsiloxane (HTPDMS) and hydrogenated bisphenol A‐type epoxy resin (AL‐3040) were coreacted with a silane coupling agent (KH‐550) to form an AL‐3040 epoxy resin–HTPDMS block copolymer. Then, the copolymer was used as a compatibilizer to modify cyanate ester with different mass ratios. Subsequently, the blend was cured to form HTPDMS‐modified shape‐memory cyanate ester. The soft Si─O─Si segments of HTPDMS act as a flexible unit that can be grafted with the crosslinked triazine structures of cyanate ester. It was excellent for the toughening modification of cyanate ester. With increasing mass ratio of compatibilizer and cyanate ester, the tensile strength and glass transition temperature (T g) of HTPDMS‐modified cyanate ester were decreased, whereas impact strength and elongation at break were increased. The shape‐memory tests exhibited that HTPDMS‐modified cyanate ester systems have excellent shape‐memory properties with a shape recovery rate of >96% and shape fixity rate of >97% and a recovery time of less than 110 s. Furthermore, Thermo‐Gravimetric Analyzer (TGA) tests showed that HTPDMS‐modified cyanate ester exhibited good thermal stability; the temperature of 10% mass loss was high at 365 °C. The char yield was increased with increasing contents of compatibilizer at 800°C. Therefore, HTPDMS modified cyanate ester exhibited much better heat resistance at high temperature. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020, 137, 48641.
doi_str_mv 10.1002/app.48641
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2350200646</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2350200646</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3341-8436ad31b723bafab137d0f6a76390726f9bf5f05223b69fac7b09520ca59cdb3</originalsourceid><addsrcrecordid>eNp1kL1OwzAURi0EEqUw8AaWmBjS-idxaraqAopUiQ4wW05it66SONipwBM8As_Ik-A2rEyWfM5379UHwDVGE4wQmcqum6QzluITMMKI50nKyOwUjCLDyYzz7BxceL9DCOMMsRH4XJrNFm5q6T3snWy96Y1tYa-aTjnZ752Cfis79fP13ajGugAb2StnZO3v4DJUzn6EOsL415g2ogp2tg6VaVS_DbU3tf2Q7TFuK6NN5GWQBxEqH0OX4EzHWerq7x2D14f7l8UyWT0_Pi3mq6SkNI2Xp5TJiuIiJ7SQWhaY5hXSTOaMcpQTpnmhM40yEjnjWpZ5gXhGUCkzXlYFHYObYW7n7Ns-rhY7u3dtXCkIzRBBiKUsWreDVTrrvVNadM400gWBkTj0K2K_4thvdKeD-25qFf4XxXy9HhK_ocqDOg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2350200646</pqid></control><display><type>article</type><title>High glass transition temperature shape‐memory materials: Hydroxyl‐terminated polydimethylsiloxane‐modified cyanate ester</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Li, Zhihua ; Hu, Jiankang ; Ma, Li ; Liu, Hongxin</creator><creatorcontrib>Li, Zhihua ; Hu, Jiankang ; Ma, Li ; Liu, Hongxin</creatorcontrib><description>ABSTRACT Hydroxyl‐terminated polydimethylsiloxane (HTPDMS) and hydrogenated bisphenol A‐type epoxy resin (AL‐3040) were coreacted with a silane coupling agent (KH‐550) to form an AL‐3040 epoxy resin–HTPDMS block copolymer. Then, the copolymer was used as a compatibilizer to modify cyanate ester with different mass ratios. Subsequently, the blend was cured to form HTPDMS‐modified shape‐memory cyanate ester. The soft Si─O─Si segments of HTPDMS act as a flexible unit that can be grafted with the crosslinked triazine structures of cyanate ester. It was excellent for the toughening modification of cyanate ester. With increasing mass ratio of compatibilizer and cyanate ester, the tensile strength and glass transition temperature (T g) of HTPDMS‐modified cyanate ester were decreased, whereas impact strength and elongation at break were increased. The shape‐memory tests exhibited that HTPDMS‐modified cyanate ester systems have excellent shape‐memory properties with a shape recovery rate of &gt;96% and shape fixity rate of &gt;97% and a recovery time of less than 110 s. Furthermore, Thermo‐Gravimetric Analyzer (TGA) tests showed that HTPDMS‐modified cyanate ester exhibited good thermal stability; the temperature of 10% mass loss was high at 365 °C. The char yield was increased with increasing contents of compatibilizer at 800°C. Therefore, HTPDMS modified cyanate ester exhibited much better heat resistance at high temperature. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020, 137, 48641.</description><identifier>ISSN: 0021-8995</identifier><identifier>EISSN: 1097-4628</identifier><identifier>DOI: 10.1002/app.48641</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Bisphenol A ; Block copolymers ; Compatibility ; Coupling agents ; Crosslinking ; Cyanates ; Elongation ; Epoxy resins ; Glass transition temperature ; Gravimetric analysis ; Heat resistance ; High temperature ; Hydroxyl‐terminated polydimethylsiloxane ; Impact strength ; Mass ratios ; Materials science ; Polydimethylsiloxane ; Polymers ; Recovery time ; Shape memory ; Shape memory cyanate ester ; Temperature ; Tensile strength ; Thermal resistance ; Thermal stability ; Toughening modification</subject><ispartof>Journal of applied polymer science, 2020-05, Vol.137 (18), p.n/a</ispartof><rights>2019 Wiley Periodicals, Inc.</rights><rights>2020 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3341-8436ad31b723bafab137d0f6a76390726f9bf5f05223b69fac7b09520ca59cdb3</citedby><cites>FETCH-LOGICAL-c3341-8436ad31b723bafab137d0f6a76390726f9bf5f05223b69fac7b09520ca59cdb3</cites><orcidid>0000-0001-9630-3644</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fapp.48641$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fapp.48641$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27911,27912,45561,45562</link.rule.ids></links><search><creatorcontrib>Li, Zhihua</creatorcontrib><creatorcontrib>Hu, Jiankang</creatorcontrib><creatorcontrib>Ma, Li</creatorcontrib><creatorcontrib>Liu, Hongxin</creatorcontrib><title>High glass transition temperature shape‐memory materials: Hydroxyl‐terminated polydimethylsiloxane‐modified cyanate ester</title><title>Journal of applied polymer science</title><description>ABSTRACT Hydroxyl‐terminated polydimethylsiloxane (HTPDMS) and hydrogenated bisphenol A‐type epoxy resin (AL‐3040) were coreacted with a silane coupling agent (KH‐550) to form an AL‐3040 epoxy resin–HTPDMS block copolymer. Then, the copolymer was used as a compatibilizer to modify cyanate ester with different mass ratios. Subsequently, the blend was cured to form HTPDMS‐modified shape‐memory cyanate ester. The soft Si─O─Si segments of HTPDMS act as a flexible unit that can be grafted with the crosslinked triazine structures of cyanate ester. It was excellent for the toughening modification of cyanate ester. With increasing mass ratio of compatibilizer and cyanate ester, the tensile strength and glass transition temperature (T g) of HTPDMS‐modified cyanate ester were decreased, whereas impact strength and elongation at break were increased. The shape‐memory tests exhibited that HTPDMS‐modified cyanate ester systems have excellent shape‐memory properties with a shape recovery rate of &gt;96% and shape fixity rate of &gt;97% and a recovery time of less than 110 s. Furthermore, Thermo‐Gravimetric Analyzer (TGA) tests showed that HTPDMS‐modified cyanate ester exhibited good thermal stability; the temperature of 10% mass loss was high at 365 °C. The char yield was increased with increasing contents of compatibilizer at 800°C. Therefore, HTPDMS modified cyanate ester exhibited much better heat resistance at high temperature. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020, 137, 48641.</description><subject>Bisphenol A</subject><subject>Block copolymers</subject><subject>Compatibility</subject><subject>Coupling agents</subject><subject>Crosslinking</subject><subject>Cyanates</subject><subject>Elongation</subject><subject>Epoxy resins</subject><subject>Glass transition temperature</subject><subject>Gravimetric analysis</subject><subject>Heat resistance</subject><subject>High temperature</subject><subject>Hydroxyl‐terminated polydimethylsiloxane</subject><subject>Impact strength</subject><subject>Mass ratios</subject><subject>Materials science</subject><subject>Polydimethylsiloxane</subject><subject>Polymers</subject><subject>Recovery time</subject><subject>Shape memory</subject><subject>Shape memory cyanate ester</subject><subject>Temperature</subject><subject>Tensile strength</subject><subject>Thermal resistance</subject><subject>Thermal stability</subject><subject>Toughening modification</subject><issn>0021-8995</issn><issn>1097-4628</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kL1OwzAURi0EEqUw8AaWmBjS-idxaraqAopUiQ4wW05it66SONipwBM8As_Ik-A2rEyWfM5379UHwDVGE4wQmcqum6QzluITMMKI50nKyOwUjCLDyYzz7BxceL9DCOMMsRH4XJrNFm5q6T3snWy96Y1tYa-aTjnZ752Cfis79fP13ajGugAb2StnZO3v4DJUzn6EOsL415g2ogp2tg6VaVS_DbU3tf2Q7TFuK6NN5GWQBxEqH0OX4EzHWerq7x2D14f7l8UyWT0_Pi3mq6SkNI2Xp5TJiuIiJ7SQWhaY5hXSTOaMcpQTpnmhM40yEjnjWpZ5gXhGUCkzXlYFHYObYW7n7Ns-rhY7u3dtXCkIzRBBiKUsWreDVTrrvVNadM400gWBkTj0K2K_4thvdKeD-25qFf4XxXy9HhK_ocqDOg</recordid><startdate>20200510</startdate><enddate>20200510</enddate><creator>Li, Zhihua</creator><creator>Hu, Jiankang</creator><creator>Ma, Li</creator><creator>Liu, Hongxin</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-9630-3644</orcidid></search><sort><creationdate>20200510</creationdate><title>High glass transition temperature shape‐memory materials: Hydroxyl‐terminated polydimethylsiloxane‐modified cyanate ester</title><author>Li, Zhihua ; Hu, Jiankang ; Ma, Li ; Liu, Hongxin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3341-8436ad31b723bafab137d0f6a76390726f9bf5f05223b69fac7b09520ca59cdb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bisphenol A</topic><topic>Block copolymers</topic><topic>Compatibility</topic><topic>Coupling agents</topic><topic>Crosslinking</topic><topic>Cyanates</topic><topic>Elongation</topic><topic>Epoxy resins</topic><topic>Glass transition temperature</topic><topic>Gravimetric analysis</topic><topic>Heat resistance</topic><topic>High temperature</topic><topic>Hydroxyl‐terminated polydimethylsiloxane</topic><topic>Impact strength</topic><topic>Mass ratios</topic><topic>Materials science</topic><topic>Polydimethylsiloxane</topic><topic>Polymers</topic><topic>Recovery time</topic><topic>Shape memory</topic><topic>Shape memory cyanate ester</topic><topic>Temperature</topic><topic>Tensile strength</topic><topic>Thermal resistance</topic><topic>Thermal stability</topic><topic>Toughening modification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Zhihua</creatorcontrib><creatorcontrib>Hu, Jiankang</creatorcontrib><creatorcontrib>Ma, Li</creatorcontrib><creatorcontrib>Liu, Hongxin</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of applied polymer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Zhihua</au><au>Hu, Jiankang</au><au>Ma, Li</au><au>Liu, Hongxin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High glass transition temperature shape‐memory materials: Hydroxyl‐terminated polydimethylsiloxane‐modified cyanate ester</atitle><jtitle>Journal of applied polymer science</jtitle><date>2020-05-10</date><risdate>2020</risdate><volume>137</volume><issue>18</issue><epage>n/a</epage><issn>0021-8995</issn><eissn>1097-4628</eissn><abstract>ABSTRACT Hydroxyl‐terminated polydimethylsiloxane (HTPDMS) and hydrogenated bisphenol A‐type epoxy resin (AL‐3040) were coreacted with a silane coupling agent (KH‐550) to form an AL‐3040 epoxy resin–HTPDMS block copolymer. Then, the copolymer was used as a compatibilizer to modify cyanate ester with different mass ratios. Subsequently, the blend was cured to form HTPDMS‐modified shape‐memory cyanate ester. The soft Si─O─Si segments of HTPDMS act as a flexible unit that can be grafted with the crosslinked triazine structures of cyanate ester. It was excellent for the toughening modification of cyanate ester. With increasing mass ratio of compatibilizer and cyanate ester, the tensile strength and glass transition temperature (T g) of HTPDMS‐modified cyanate ester were decreased, whereas impact strength and elongation at break were increased. The shape‐memory tests exhibited that HTPDMS‐modified cyanate ester systems have excellent shape‐memory properties with a shape recovery rate of &gt;96% and shape fixity rate of &gt;97% and a recovery time of less than 110 s. Furthermore, Thermo‐Gravimetric Analyzer (TGA) tests showed that HTPDMS‐modified cyanate ester exhibited good thermal stability; the temperature of 10% mass loss was high at 365 °C. The char yield was increased with increasing contents of compatibilizer at 800°C. Therefore, HTPDMS modified cyanate ester exhibited much better heat resistance at high temperature. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020, 137, 48641.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/app.48641</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-9630-3644</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-8995
ispartof Journal of applied polymer science, 2020-05, Vol.137 (18), p.n/a
issn 0021-8995
1097-4628
language eng
recordid cdi_proquest_journals_2350200646
source Wiley Online Library Journals Frontfile Complete
subjects Bisphenol A
Block copolymers
Compatibility
Coupling agents
Crosslinking
Cyanates
Elongation
Epoxy resins
Glass transition temperature
Gravimetric analysis
Heat resistance
High temperature
Hydroxyl‐terminated polydimethylsiloxane
Impact strength
Mass ratios
Materials science
Polydimethylsiloxane
Polymers
Recovery time
Shape memory
Shape memory cyanate ester
Temperature
Tensile strength
Thermal resistance
Thermal stability
Toughening modification
title High glass transition temperature shape‐memory materials: Hydroxyl‐terminated polydimethylsiloxane‐modified cyanate ester
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T22%3A29%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20glass%20transition%20temperature%20shape%E2%80%90memory%20materials:%20Hydroxyl%E2%80%90terminated%20polydimethylsiloxane%E2%80%90modified%20cyanate%20ester&rft.jtitle=Journal%20of%20applied%20polymer%20science&rft.au=Li,%20Zhihua&rft.date=2020-05-10&rft.volume=137&rft.issue=18&rft.epage=n/a&rft.issn=0021-8995&rft.eissn=1097-4628&rft_id=info:doi/10.1002/app.48641&rft_dat=%3Cproquest_cross%3E2350200646%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2350200646&rft_id=info:pmid/&rfr_iscdi=true