Modeling of thermo‐viscoelastic material behavior of glass over a wide temperature range in glass compression molding
In glass compression molding, most current modeling approaches of temperature‐dependent viscoelastic behavior of glass materials are restricted to thermo‐rheologically simple assumption. This research conducts a detailed study and demonstrates that this assumption, however, is not adequate for glass...
Gespeichert in:
Veröffentlicht in: | Journal of the American Ceramic Society 2020-04, Vol.103 (4), p.2791-2807 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2807 |
---|---|
container_issue | 4 |
container_start_page | 2791 |
container_title | Journal of the American Ceramic Society |
container_volume | 103 |
creator | Vu, Anh Tuan Vu, Anh Ngoc Grunwald, Tim Bergs, Thomas |
description | In glass compression molding, most current modeling approaches of temperature‐dependent viscoelastic behavior of glass materials are restricted to thermo‐rheologically simple assumption. This research conducts a detailed study and demonstrates that this assumption, however, is not adequate for glass molding simulations over a wide range of molding temperatures. In this paper, we introduce a new method that eliminates the prerequisite of relaxation functions and shift factors for modeling of the thermo‐viscoelastic material behavior. More specifically, the temperature effect is directly incorporated into each parameter of the mechanical model. The mechanical model parameters are derived from creep displacements using uniaxial compression experiments. Validations of the proposed method are conducted for three different glass categories, including borosilicate, aluminosilicate, and chalcogenide glasses. Excellent agreement between the creep experiments and simulation results is found in all glasses over long pressing time up to 900 seconds and a large temperature range that corresponds to the glass viscosity of log (η) = 9.5 – 6.8 Pas. The method eventually promises an enhancement of the glass molding simulation. |
doi_str_mv | 10.1111/jace.16963 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2350197499</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2350197499</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3373-4d7a20ee810f4853499cce0a350a80740c97ae6234b4399588fbec2b59b20ae13</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EEqWw4QSW2CGl-Cd_XlZVKaAiNrC2HGfSukriYKetuuMInJGT4JKumc1o9L55T3oI3VIyoWEeNkrDhKYi5WdoRJOERkzQ9ByNCCEsynJGLtGV95twUpHHI7R_tSXUpl1hW-F-Da6xP1_fO-O1hVr53mjcqB6cUTUuYK12xrojugqix3YHDiu8NyXgHpoOnOq3DrBT7QqwaU-Ytk3nwHtjW9zYugxx1-iiUrWHm9Meo4_H-fvsKVq-LZ5n02WkOc94FJeZYgQgp6SK84THQmgNRPGEqJxkMdEiU5AyHhcxFyLJ86oAzYpEFIwooHyM7gbfztnPLfhebuzWtSFSsmBCRRYsA3U_UNpZ7x1UsnOmUe4gKZHHYuWxWPlXbIDpAO9NDYd_SPkync2Hn1_UG31q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2350197499</pqid></control><display><type>article</type><title>Modeling of thermo‐viscoelastic material behavior of glass over a wide temperature range in glass compression molding</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Vu, Anh Tuan ; Vu, Anh Ngoc ; Grunwald, Tim ; Bergs, Thomas</creator><creatorcontrib>Vu, Anh Tuan ; Vu, Anh Ngoc ; Grunwald, Tim ; Bergs, Thomas</creatorcontrib><description>In glass compression molding, most current modeling approaches of temperature‐dependent viscoelastic behavior of glass materials are restricted to thermo‐rheologically simple assumption. This research conducts a detailed study and demonstrates that this assumption, however, is not adequate for glass molding simulations over a wide range of molding temperatures. In this paper, we introduce a new method that eliminates the prerequisite of relaxation functions and shift factors for modeling of the thermo‐viscoelastic material behavior. More specifically, the temperature effect is directly incorporated into each parameter of the mechanical model. The mechanical model parameters are derived from creep displacements using uniaxial compression experiments. Validations of the proposed method are conducted for three different glass categories, including borosilicate, aluminosilicate, and chalcogenide glasses. Excellent agreement between the creep experiments and simulation results is found in all glasses over long pressing time up to 900 seconds and a large temperature range that corresponds to the glass viscosity of log (η) = 9.5 – 6.8 Pas. The method eventually promises an enhancement of the glass molding simulation.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/jace.16963</identifier><language>eng</language><publisher>Columbus: Wiley Subscription Services, Inc</publisher><subject>Aluminosilicates ; Aluminum silicates ; Borosilicate glass ; Computer simulation ; Creep (materials) ; FEM simulation ; glass molding ; Mathematical models ; Modelling ; Parameters ; Pressure molding ; Rheological properties ; Temperature dependence ; Temperature effects ; thermo‐rheologically simple ; thermo‐viscoelastic modeling ; Viscoelasticity ; Viscosity</subject><ispartof>Journal of the American Ceramic Society, 2020-04, Vol.103 (4), p.2791-2807</ispartof><rights>2019 The Authors. published by Wiley Periodicals, Inc. on behalf of American Ceramic Society (ACERS)</rights><rights>2020 American Ceramic Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3373-4d7a20ee810f4853499cce0a350a80740c97ae6234b4399588fbec2b59b20ae13</citedby><cites>FETCH-LOGICAL-c3373-4d7a20ee810f4853499cce0a350a80740c97ae6234b4399588fbec2b59b20ae13</cites><orcidid>0000-0002-5965-0169</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjace.16963$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjace.16963$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Vu, Anh Tuan</creatorcontrib><creatorcontrib>Vu, Anh Ngoc</creatorcontrib><creatorcontrib>Grunwald, Tim</creatorcontrib><creatorcontrib>Bergs, Thomas</creatorcontrib><title>Modeling of thermo‐viscoelastic material behavior of glass over a wide temperature range in glass compression molding</title><title>Journal of the American Ceramic Society</title><description>In glass compression molding, most current modeling approaches of temperature‐dependent viscoelastic behavior of glass materials are restricted to thermo‐rheologically simple assumption. This research conducts a detailed study and demonstrates that this assumption, however, is not adequate for glass molding simulations over a wide range of molding temperatures. In this paper, we introduce a new method that eliminates the prerequisite of relaxation functions and shift factors for modeling of the thermo‐viscoelastic material behavior. More specifically, the temperature effect is directly incorporated into each parameter of the mechanical model. The mechanical model parameters are derived from creep displacements using uniaxial compression experiments. Validations of the proposed method are conducted for three different glass categories, including borosilicate, aluminosilicate, and chalcogenide glasses. Excellent agreement between the creep experiments and simulation results is found in all glasses over long pressing time up to 900 seconds and a large temperature range that corresponds to the glass viscosity of log (η) = 9.5 – 6.8 Pas. The method eventually promises an enhancement of the glass molding simulation.</description><subject>Aluminosilicates</subject><subject>Aluminum silicates</subject><subject>Borosilicate glass</subject><subject>Computer simulation</subject><subject>Creep (materials)</subject><subject>FEM simulation</subject><subject>glass molding</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Parameters</subject><subject>Pressure molding</subject><subject>Rheological properties</subject><subject>Temperature dependence</subject><subject>Temperature effects</subject><subject>thermo‐rheologically simple</subject><subject>thermo‐viscoelastic modeling</subject><subject>Viscoelasticity</subject><subject>Viscosity</subject><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp9kE1OwzAQhS0EEqWw4QSW2CGl-Cd_XlZVKaAiNrC2HGfSukriYKetuuMInJGT4JKumc1o9L55T3oI3VIyoWEeNkrDhKYi5WdoRJOERkzQ9ByNCCEsynJGLtGV95twUpHHI7R_tSXUpl1hW-F-Da6xP1_fO-O1hVr53mjcqB6cUTUuYK12xrojugqix3YHDiu8NyXgHpoOnOq3DrBT7QqwaU-Ytk3nwHtjW9zYugxx1-iiUrWHm9Meo4_H-fvsKVq-LZ5n02WkOc94FJeZYgQgp6SK84THQmgNRPGEqJxkMdEiU5AyHhcxFyLJ86oAzYpEFIwooHyM7gbfztnPLfhebuzWtSFSsmBCRRYsA3U_UNpZ7x1UsnOmUe4gKZHHYuWxWPlXbIDpAO9NDYd_SPkync2Hn1_UG31q</recordid><startdate>202004</startdate><enddate>202004</enddate><creator>Vu, Anh Tuan</creator><creator>Vu, Anh Ngoc</creator><creator>Grunwald, Tim</creator><creator>Bergs, Thomas</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-5965-0169</orcidid></search><sort><creationdate>202004</creationdate><title>Modeling of thermo‐viscoelastic material behavior of glass over a wide temperature range in glass compression molding</title><author>Vu, Anh Tuan ; Vu, Anh Ngoc ; Grunwald, Tim ; Bergs, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3373-4d7a20ee810f4853499cce0a350a80740c97ae6234b4399588fbec2b59b20ae13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aluminosilicates</topic><topic>Aluminum silicates</topic><topic>Borosilicate glass</topic><topic>Computer simulation</topic><topic>Creep (materials)</topic><topic>FEM simulation</topic><topic>glass molding</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Parameters</topic><topic>Pressure molding</topic><topic>Rheological properties</topic><topic>Temperature dependence</topic><topic>Temperature effects</topic><topic>thermo‐rheologically simple</topic><topic>thermo‐viscoelastic modeling</topic><topic>Viscoelasticity</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vu, Anh Tuan</creatorcontrib><creatorcontrib>Vu, Anh Ngoc</creatorcontrib><creatorcontrib>Grunwald, Tim</creatorcontrib><creatorcontrib>Bergs, Thomas</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vu, Anh Tuan</au><au>Vu, Anh Ngoc</au><au>Grunwald, Tim</au><au>Bergs, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling of thermo‐viscoelastic material behavior of glass over a wide temperature range in glass compression molding</atitle><jtitle>Journal of the American Ceramic Society</jtitle><date>2020-04</date><risdate>2020</risdate><volume>103</volume><issue>4</issue><spage>2791</spage><epage>2807</epage><pages>2791-2807</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><abstract>In glass compression molding, most current modeling approaches of temperature‐dependent viscoelastic behavior of glass materials are restricted to thermo‐rheologically simple assumption. This research conducts a detailed study and demonstrates that this assumption, however, is not adequate for glass molding simulations over a wide range of molding temperatures. In this paper, we introduce a new method that eliminates the prerequisite of relaxation functions and shift factors for modeling of the thermo‐viscoelastic material behavior. More specifically, the temperature effect is directly incorporated into each parameter of the mechanical model. The mechanical model parameters are derived from creep displacements using uniaxial compression experiments. Validations of the proposed method are conducted for three different glass categories, including borosilicate, aluminosilicate, and chalcogenide glasses. Excellent agreement between the creep experiments and simulation results is found in all glasses over long pressing time up to 900 seconds and a large temperature range that corresponds to the glass viscosity of log (η) = 9.5 – 6.8 Pas. The method eventually promises an enhancement of the glass molding simulation.</abstract><cop>Columbus</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/jace.16963</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-5965-0169</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7820 |
ispartof | Journal of the American Ceramic Society, 2020-04, Vol.103 (4), p.2791-2807 |
issn | 0002-7820 1551-2916 |
language | eng |
recordid | cdi_proquest_journals_2350197499 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Aluminosilicates Aluminum silicates Borosilicate glass Computer simulation Creep (materials) FEM simulation glass molding Mathematical models Modelling Parameters Pressure molding Rheological properties Temperature dependence Temperature effects thermo‐rheologically simple thermo‐viscoelastic modeling Viscoelasticity Viscosity |
title | Modeling of thermo‐viscoelastic material behavior of glass over a wide temperature range in glass compression molding |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T14%3A38%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20of%20thermo%E2%80%90viscoelastic%20material%20behavior%20of%20glass%20over%20a%20wide%20temperature%20range%20in%20glass%20compression%20molding&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=Vu,%20Anh%20Tuan&rft.date=2020-04&rft.volume=103&rft.issue=4&rft.spage=2791&rft.epage=2807&rft.pages=2791-2807&rft.issn=0002-7820&rft.eissn=1551-2916&rft_id=info:doi/10.1111/jace.16963&rft_dat=%3Cproquest_cross%3E2350197499%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2350197499&rft_id=info:pmid/&rfr_iscdi=true |