Modeling of thermo‐viscoelastic material behavior of glass over a wide temperature range in glass compression molding

In glass compression molding, most current modeling approaches of temperature‐dependent viscoelastic behavior of glass materials are restricted to thermo‐rheologically simple assumption. This research conducts a detailed study and demonstrates that this assumption, however, is not adequate for glass...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Ceramic Society 2020-04, Vol.103 (4), p.2791-2807
Hauptverfasser: Vu, Anh Tuan, Vu, Anh Ngoc, Grunwald, Tim, Bergs, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2807
container_issue 4
container_start_page 2791
container_title Journal of the American Ceramic Society
container_volume 103
creator Vu, Anh Tuan
Vu, Anh Ngoc
Grunwald, Tim
Bergs, Thomas
description In glass compression molding, most current modeling approaches of temperature‐dependent viscoelastic behavior of glass materials are restricted to thermo‐rheologically simple assumption. This research conducts a detailed study and demonstrates that this assumption, however, is not adequate for glass molding simulations over a wide range of molding temperatures. In this paper, we introduce a new method that eliminates the prerequisite of relaxation functions and shift factors for modeling of the thermo‐viscoelastic material behavior. More specifically, the temperature effect is directly incorporated into each parameter of the mechanical model. The mechanical model parameters are derived from creep displacements using uniaxial compression experiments. Validations of the proposed method are conducted for three different glass categories, including borosilicate, aluminosilicate, and chalcogenide glasses. Excellent agreement between the creep experiments and simulation results is found in all glasses over long pressing time up to 900 seconds and a large temperature range that corresponds to the glass viscosity of log (η) = 9.5 – 6.8 Pas. The method eventually promises an enhancement of the glass molding simulation.
doi_str_mv 10.1111/jace.16963
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2350197499</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2350197499</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3373-4d7a20ee810f4853499cce0a350a80740c97ae6234b4399588fbec2b59b20ae13</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EEqWw4QSW2CGl-Cd_XlZVKaAiNrC2HGfSukriYKetuuMInJGT4JKumc1o9L55T3oI3VIyoWEeNkrDhKYi5WdoRJOERkzQ9ByNCCEsynJGLtGV95twUpHHI7R_tSXUpl1hW-F-Da6xP1_fO-O1hVr53mjcqB6cUTUuYK12xrojugqix3YHDiu8NyXgHpoOnOq3DrBT7QqwaU-Ytk3nwHtjW9zYugxx1-iiUrWHm9Meo4_H-fvsKVq-LZ5n02WkOc94FJeZYgQgp6SK84THQmgNRPGEqJxkMdEiU5AyHhcxFyLJ86oAzYpEFIwooHyM7gbfztnPLfhebuzWtSFSsmBCRRYsA3U_UNpZ7x1UsnOmUe4gKZHHYuWxWPlXbIDpAO9NDYd_SPkync2Hn1_UG31q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2350197499</pqid></control><display><type>article</type><title>Modeling of thermo‐viscoelastic material behavior of glass over a wide temperature range in glass compression molding</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Vu, Anh Tuan ; Vu, Anh Ngoc ; Grunwald, Tim ; Bergs, Thomas</creator><creatorcontrib>Vu, Anh Tuan ; Vu, Anh Ngoc ; Grunwald, Tim ; Bergs, Thomas</creatorcontrib><description>In glass compression molding, most current modeling approaches of temperature‐dependent viscoelastic behavior of glass materials are restricted to thermo‐rheologically simple assumption. This research conducts a detailed study and demonstrates that this assumption, however, is not adequate for glass molding simulations over a wide range of molding temperatures. In this paper, we introduce a new method that eliminates the prerequisite of relaxation functions and shift factors for modeling of the thermo‐viscoelastic material behavior. More specifically, the temperature effect is directly incorporated into each parameter of the mechanical model. The mechanical model parameters are derived from creep displacements using uniaxial compression experiments. Validations of the proposed method are conducted for three different glass categories, including borosilicate, aluminosilicate, and chalcogenide glasses. Excellent agreement between the creep experiments and simulation results is found in all glasses over long pressing time up to 900 seconds and a large temperature range that corresponds to the glass viscosity of log (η) = 9.5 – 6.8 Pas. The method eventually promises an enhancement of the glass molding simulation.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/jace.16963</identifier><language>eng</language><publisher>Columbus: Wiley Subscription Services, Inc</publisher><subject>Aluminosilicates ; Aluminum silicates ; Borosilicate glass ; Computer simulation ; Creep (materials) ; FEM simulation ; glass molding ; Mathematical models ; Modelling ; Parameters ; Pressure molding ; Rheological properties ; Temperature dependence ; Temperature effects ; thermo‐rheologically simple ; thermo‐viscoelastic modeling ; Viscoelasticity ; Viscosity</subject><ispartof>Journal of the American Ceramic Society, 2020-04, Vol.103 (4), p.2791-2807</ispartof><rights>2019 The Authors. published by Wiley Periodicals, Inc. on behalf of American Ceramic Society (ACERS)</rights><rights>2020 American Ceramic Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3373-4d7a20ee810f4853499cce0a350a80740c97ae6234b4399588fbec2b59b20ae13</citedby><cites>FETCH-LOGICAL-c3373-4d7a20ee810f4853499cce0a350a80740c97ae6234b4399588fbec2b59b20ae13</cites><orcidid>0000-0002-5965-0169</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjace.16963$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjace.16963$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Vu, Anh Tuan</creatorcontrib><creatorcontrib>Vu, Anh Ngoc</creatorcontrib><creatorcontrib>Grunwald, Tim</creatorcontrib><creatorcontrib>Bergs, Thomas</creatorcontrib><title>Modeling of thermo‐viscoelastic material behavior of glass over a wide temperature range in glass compression molding</title><title>Journal of the American Ceramic Society</title><description>In glass compression molding, most current modeling approaches of temperature‐dependent viscoelastic behavior of glass materials are restricted to thermo‐rheologically simple assumption. This research conducts a detailed study and demonstrates that this assumption, however, is not adequate for glass molding simulations over a wide range of molding temperatures. In this paper, we introduce a new method that eliminates the prerequisite of relaxation functions and shift factors for modeling of the thermo‐viscoelastic material behavior. More specifically, the temperature effect is directly incorporated into each parameter of the mechanical model. The mechanical model parameters are derived from creep displacements using uniaxial compression experiments. Validations of the proposed method are conducted for three different glass categories, including borosilicate, aluminosilicate, and chalcogenide glasses. Excellent agreement between the creep experiments and simulation results is found in all glasses over long pressing time up to 900 seconds and a large temperature range that corresponds to the glass viscosity of log (η) = 9.5 – 6.8 Pas. The method eventually promises an enhancement of the glass molding simulation.</description><subject>Aluminosilicates</subject><subject>Aluminum silicates</subject><subject>Borosilicate glass</subject><subject>Computer simulation</subject><subject>Creep (materials)</subject><subject>FEM simulation</subject><subject>glass molding</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Parameters</subject><subject>Pressure molding</subject><subject>Rheological properties</subject><subject>Temperature dependence</subject><subject>Temperature effects</subject><subject>thermo‐rheologically simple</subject><subject>thermo‐viscoelastic modeling</subject><subject>Viscoelasticity</subject><subject>Viscosity</subject><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp9kE1OwzAQhS0EEqWw4QSW2CGl-Cd_XlZVKaAiNrC2HGfSukriYKetuuMInJGT4JKumc1o9L55T3oI3VIyoWEeNkrDhKYi5WdoRJOERkzQ9ByNCCEsynJGLtGV95twUpHHI7R_tSXUpl1hW-F-Da6xP1_fO-O1hVr53mjcqB6cUTUuYK12xrojugqix3YHDiu8NyXgHpoOnOq3DrBT7QqwaU-Ytk3nwHtjW9zYugxx1-iiUrWHm9Meo4_H-fvsKVq-LZ5n02WkOc94FJeZYgQgp6SK84THQmgNRPGEqJxkMdEiU5AyHhcxFyLJ86oAzYpEFIwooHyM7gbfztnPLfhebuzWtSFSsmBCRRYsA3U_UNpZ7x1UsnOmUe4gKZHHYuWxWPlXbIDpAO9NDYd_SPkync2Hn1_UG31q</recordid><startdate>202004</startdate><enddate>202004</enddate><creator>Vu, Anh Tuan</creator><creator>Vu, Anh Ngoc</creator><creator>Grunwald, Tim</creator><creator>Bergs, Thomas</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-5965-0169</orcidid></search><sort><creationdate>202004</creationdate><title>Modeling of thermo‐viscoelastic material behavior of glass over a wide temperature range in glass compression molding</title><author>Vu, Anh Tuan ; Vu, Anh Ngoc ; Grunwald, Tim ; Bergs, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3373-4d7a20ee810f4853499cce0a350a80740c97ae6234b4399588fbec2b59b20ae13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aluminosilicates</topic><topic>Aluminum silicates</topic><topic>Borosilicate glass</topic><topic>Computer simulation</topic><topic>Creep (materials)</topic><topic>FEM simulation</topic><topic>glass molding</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Parameters</topic><topic>Pressure molding</topic><topic>Rheological properties</topic><topic>Temperature dependence</topic><topic>Temperature effects</topic><topic>thermo‐rheologically simple</topic><topic>thermo‐viscoelastic modeling</topic><topic>Viscoelasticity</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vu, Anh Tuan</creatorcontrib><creatorcontrib>Vu, Anh Ngoc</creatorcontrib><creatorcontrib>Grunwald, Tim</creatorcontrib><creatorcontrib>Bergs, Thomas</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vu, Anh Tuan</au><au>Vu, Anh Ngoc</au><au>Grunwald, Tim</au><au>Bergs, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling of thermo‐viscoelastic material behavior of glass over a wide temperature range in glass compression molding</atitle><jtitle>Journal of the American Ceramic Society</jtitle><date>2020-04</date><risdate>2020</risdate><volume>103</volume><issue>4</issue><spage>2791</spage><epage>2807</epage><pages>2791-2807</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><abstract>In glass compression molding, most current modeling approaches of temperature‐dependent viscoelastic behavior of glass materials are restricted to thermo‐rheologically simple assumption. This research conducts a detailed study and demonstrates that this assumption, however, is not adequate for glass molding simulations over a wide range of molding temperatures. In this paper, we introduce a new method that eliminates the prerequisite of relaxation functions and shift factors for modeling of the thermo‐viscoelastic material behavior. More specifically, the temperature effect is directly incorporated into each parameter of the mechanical model. The mechanical model parameters are derived from creep displacements using uniaxial compression experiments. Validations of the proposed method are conducted for three different glass categories, including borosilicate, aluminosilicate, and chalcogenide glasses. Excellent agreement between the creep experiments and simulation results is found in all glasses over long pressing time up to 900 seconds and a large temperature range that corresponds to the glass viscosity of log (η) = 9.5 – 6.8 Pas. The method eventually promises an enhancement of the glass molding simulation.</abstract><cop>Columbus</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/jace.16963</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-5965-0169</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-7820
ispartof Journal of the American Ceramic Society, 2020-04, Vol.103 (4), p.2791-2807
issn 0002-7820
1551-2916
language eng
recordid cdi_proquest_journals_2350197499
source Wiley Online Library Journals Frontfile Complete
subjects Aluminosilicates
Aluminum silicates
Borosilicate glass
Computer simulation
Creep (materials)
FEM simulation
glass molding
Mathematical models
Modelling
Parameters
Pressure molding
Rheological properties
Temperature dependence
Temperature effects
thermo‐rheologically simple
thermo‐viscoelastic modeling
Viscoelasticity
Viscosity
title Modeling of thermo‐viscoelastic material behavior of glass over a wide temperature range in glass compression molding
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T14%3A38%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20of%20thermo%E2%80%90viscoelastic%20material%20behavior%20of%20glass%20over%20a%20wide%20temperature%20range%20in%20glass%20compression%20molding&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=Vu,%20Anh%20Tuan&rft.date=2020-04&rft.volume=103&rft.issue=4&rft.spage=2791&rft.epage=2807&rft.pages=2791-2807&rft.issn=0002-7820&rft.eissn=1551-2916&rft_id=info:doi/10.1111/jace.16963&rft_dat=%3Cproquest_cross%3E2350197499%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2350197499&rft_id=info:pmid/&rfr_iscdi=true