A drought monitoring framework for data-scarce regions
Drought monitoring is a critical activity for drought risk management; however, the lack of ground-based observations of climatological and hydrological variables in many regions of the world hinders an adequate follow-up and investigation of this phenomenon. This paper introduces a transparent fram...
Gespeichert in:
Veröffentlicht in: | Journal of hydroinformatics 2020-01, Vol.22 (1), p.170-185 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 185 |
---|---|
container_issue | 1 |
container_start_page | 170 |
container_title | Journal of hydroinformatics |
container_volume | 22 |
creator | Real-Rangel, Roberto A. Pedrozo-Acuña, Adrián Breña-Naranjo, J. Agustín Alcocer-Yamanaka, Víctor H. |
description | Drought monitoring is a critical activity for drought risk management; however, the lack of ground-based observations of climatological and hydrological variables in many regions of the world hinders an adequate follow-up and investigation of this phenomenon. This paper introduces a transparent framework for monitoring the spatio-temporal distribution of drought hazard based on uni- and multivariate standardized drought indices that use reanalysis datasets of hydrological variables available freely and globally. In the case study of the 2015–2017 East-Southwest drought in Mexico, the introduced framework successfully detected the spatial and temporal patterns of drought conditions, even in regions where a benchmark drought monitoring system failed to detect deficits. In addition, the ability of the introduced framework to detect drought impacts on the annual agricultural maize production in Mexico was evaluated using data of 1980–2018, yielding scores of the false alarm ratio =0.32, the probability of detection = 0.71, and the proportion correct = 0.68 for the analysis at the national scale. Currently, the framework provides a significant extension to the capabilities for national drought monitoring, and it is being used by the Mexican water authority in the decision-making process related to drought severity assessment. |
doi_str_mv | 10.2166/hydro.2019.020 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2350183472</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2350183472</sourcerecordid><originalsourceid>FETCH-LOGICAL-c307t-1a958a88ac17e17d13458ec0c6930a648748ef61c33f7a1ade36792d757d15883</originalsourceid><addsrcrecordid>eNotkDtPwzAUhS0EEqWwMkdidvD1O2NV8ZIqscBsWY6TppC4XCdC_fekLdM9w3fOlT5C7oGVHLR-3B5qTCVnUJWMswuyAKkVBSPk5SlLakDCNbnJeccYB2FhQfSqmFtTux2LPg3dmLAb2qJB38ffhF9Fk7Co_ehpDh5DLDC2XRryLblq_HeOd_93ST6fnz7Wr3Tz_vK2Xm1oEMyMFHylrLfWBzARTA1CKhsDC7oSzGtpjbSx0RCEaIwHX0ehTcVro2ZWWSuW5OG8u8f0M8U8ul2acJhfOi4UAyuk4TNVnqmAKWeMjdtj13s8OGDu6Mad3LijGze7EX8hL1bG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2350183472</pqid></control><display><type>article</type><title>A drought monitoring framework for data-scarce regions</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Real-Rangel, Roberto A. ; Pedrozo-Acuña, Adrián ; Breña-Naranjo, J. Agustín ; Alcocer-Yamanaka, Víctor H.</creator><creatorcontrib>Real-Rangel, Roberto A. ; Pedrozo-Acuña, Adrián ; Breña-Naranjo, J. Agustín ; Alcocer-Yamanaka, Víctor H.</creatorcontrib><description>Drought monitoring is a critical activity for drought risk management; however, the lack of ground-based observations of climatological and hydrological variables in many regions of the world hinders an adequate follow-up and investigation of this phenomenon. This paper introduces a transparent framework for monitoring the spatio-temporal distribution of drought hazard based on uni- and multivariate standardized drought indices that use reanalysis datasets of hydrological variables available freely and globally. In the case study of the 2015–2017 East-Southwest drought in Mexico, the introduced framework successfully detected the spatial and temporal patterns of drought conditions, even in regions where a benchmark drought monitoring system failed to detect deficits. In addition, the ability of the introduced framework to detect drought impacts on the annual agricultural maize production in Mexico was evaluated using data of 1980–2018, yielding scores of the false alarm ratio =0.32, the probability of detection = 0.71, and the proportion correct = 0.68 for the analysis at the national scale. Currently, the framework provides a significant extension to the capabilities for national drought monitoring, and it is being used by the Mexican water authority in the decision-making process related to drought severity assessment.</description><identifier>ISSN: 1464-7141</identifier><identifier>EISSN: 1465-1734</identifier><identifier>DOI: 10.2166/hydro.2019.020</identifier><language>eng</language><publisher>London: IWA Publishing</publisher><subject>Agricultural management ; Basins ; Crop production ; Decision making ; Drought ; Drought index ; Environmental impact ; Environmental monitoring ; Environmental risk ; False alarms ; Frameworks ; General circulation models ; Ground-based observation ; Hydrology ; Monitoring ; Monitoring systems ; Precipitation ; Probability theory ; Regions ; Risk management ; Spatial distribution ; Stream flow ; Temporal distribution ; Variables ; Water utilities ; Weather hazards</subject><ispartof>Journal of hydroinformatics, 2020-01, Vol.22 (1), p.170-185</ispartof><rights>Copyright IWA Publishing Jan 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c307t-1a958a88ac17e17d13458ec0c6930a648748ef61c33f7a1ade36792d757d15883</citedby><cites>FETCH-LOGICAL-c307t-1a958a88ac17e17d13458ec0c6930a648748ef61c33f7a1ade36792d757d15883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Real-Rangel, Roberto A.</creatorcontrib><creatorcontrib>Pedrozo-Acuña, Adrián</creatorcontrib><creatorcontrib>Breña-Naranjo, J. Agustín</creatorcontrib><creatorcontrib>Alcocer-Yamanaka, Víctor H.</creatorcontrib><title>A drought monitoring framework for data-scarce regions</title><title>Journal of hydroinformatics</title><description>Drought monitoring is a critical activity for drought risk management; however, the lack of ground-based observations of climatological and hydrological variables in many regions of the world hinders an adequate follow-up and investigation of this phenomenon. This paper introduces a transparent framework for monitoring the spatio-temporal distribution of drought hazard based on uni- and multivariate standardized drought indices that use reanalysis datasets of hydrological variables available freely and globally. In the case study of the 2015–2017 East-Southwest drought in Mexico, the introduced framework successfully detected the spatial and temporal patterns of drought conditions, even in regions where a benchmark drought monitoring system failed to detect deficits. In addition, the ability of the introduced framework to detect drought impacts on the annual agricultural maize production in Mexico was evaluated using data of 1980–2018, yielding scores of the false alarm ratio =0.32, the probability of detection = 0.71, and the proportion correct = 0.68 for the analysis at the national scale. Currently, the framework provides a significant extension to the capabilities for national drought monitoring, and it is being used by the Mexican water authority in the decision-making process related to drought severity assessment.</description><subject>Agricultural management</subject><subject>Basins</subject><subject>Crop production</subject><subject>Decision making</subject><subject>Drought</subject><subject>Drought index</subject><subject>Environmental impact</subject><subject>Environmental monitoring</subject><subject>Environmental risk</subject><subject>False alarms</subject><subject>Frameworks</subject><subject>General circulation models</subject><subject>Ground-based observation</subject><subject>Hydrology</subject><subject>Monitoring</subject><subject>Monitoring systems</subject><subject>Precipitation</subject><subject>Probability theory</subject><subject>Regions</subject><subject>Risk management</subject><subject>Spatial distribution</subject><subject>Stream flow</subject><subject>Temporal distribution</subject><subject>Variables</subject><subject>Water utilities</subject><subject>Weather hazards</subject><issn>1464-7141</issn><issn>1465-1734</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNotkDtPwzAUhS0EEqWwMkdidvD1O2NV8ZIqscBsWY6TppC4XCdC_fekLdM9w3fOlT5C7oGVHLR-3B5qTCVnUJWMswuyAKkVBSPk5SlLakDCNbnJeccYB2FhQfSqmFtTux2LPg3dmLAb2qJB38ffhF9Fk7Co_ehpDh5DLDC2XRryLblq_HeOd_93ST6fnz7Wr3Tz_vK2Xm1oEMyMFHylrLfWBzARTA1CKhsDC7oSzGtpjbSx0RCEaIwHX0ehTcVro2ZWWSuW5OG8u8f0M8U8ul2acJhfOi4UAyuk4TNVnqmAKWeMjdtj13s8OGDu6Mad3LijGze7EX8hL1bG</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Real-Rangel, Roberto A.</creator><creator>Pedrozo-Acuña, Adrián</creator><creator>Breña-Naranjo, J. Agustín</creator><creator>Alcocer-Yamanaka, Víctor H.</creator><general>IWA Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7UA</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope></search><sort><creationdate>20200101</creationdate><title>A drought monitoring framework for data-scarce regions</title><author>Real-Rangel, Roberto A. ; Pedrozo-Acuña, Adrián ; Breña-Naranjo, J. Agustín ; Alcocer-Yamanaka, Víctor H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c307t-1a958a88ac17e17d13458ec0c6930a648748ef61c33f7a1ade36792d757d15883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Agricultural management</topic><topic>Basins</topic><topic>Crop production</topic><topic>Decision making</topic><topic>Drought</topic><topic>Drought index</topic><topic>Environmental impact</topic><topic>Environmental monitoring</topic><topic>Environmental risk</topic><topic>False alarms</topic><topic>Frameworks</topic><topic>General circulation models</topic><topic>Ground-based observation</topic><topic>Hydrology</topic><topic>Monitoring</topic><topic>Monitoring systems</topic><topic>Precipitation</topic><topic>Probability theory</topic><topic>Regions</topic><topic>Risk management</topic><topic>Spatial distribution</topic><topic>Stream flow</topic><topic>Temporal distribution</topic><topic>Variables</topic><topic>Water utilities</topic><topic>Weather hazards</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Real-Rangel, Roberto A.</creatorcontrib><creatorcontrib>Pedrozo-Acuña, Adrián</creatorcontrib><creatorcontrib>Breña-Naranjo, J. Agustín</creatorcontrib><creatorcontrib>Alcocer-Yamanaka, Víctor H.</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><jtitle>Journal of hydroinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Real-Rangel, Roberto A.</au><au>Pedrozo-Acuña, Adrián</au><au>Breña-Naranjo, J. Agustín</au><au>Alcocer-Yamanaka, Víctor H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A drought monitoring framework for data-scarce regions</atitle><jtitle>Journal of hydroinformatics</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>22</volume><issue>1</issue><spage>170</spage><epage>185</epage><pages>170-185</pages><issn>1464-7141</issn><eissn>1465-1734</eissn><abstract>Drought monitoring is a critical activity for drought risk management; however, the lack of ground-based observations of climatological and hydrological variables in many regions of the world hinders an adequate follow-up and investigation of this phenomenon. This paper introduces a transparent framework for monitoring the spatio-temporal distribution of drought hazard based on uni- and multivariate standardized drought indices that use reanalysis datasets of hydrological variables available freely and globally. In the case study of the 2015–2017 East-Southwest drought in Mexico, the introduced framework successfully detected the spatial and temporal patterns of drought conditions, even in regions where a benchmark drought monitoring system failed to detect deficits. In addition, the ability of the introduced framework to detect drought impacts on the annual agricultural maize production in Mexico was evaluated using data of 1980–2018, yielding scores of the false alarm ratio =0.32, the probability of detection = 0.71, and the proportion correct = 0.68 for the analysis at the national scale. Currently, the framework provides a significant extension to the capabilities for national drought monitoring, and it is being used by the Mexican water authority in the decision-making process related to drought severity assessment.</abstract><cop>London</cop><pub>IWA Publishing</pub><doi>10.2166/hydro.2019.020</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1464-7141 |
ispartof | Journal of hydroinformatics, 2020-01, Vol.22 (1), p.170-185 |
issn | 1464-7141 1465-1734 |
language | eng |
recordid | cdi_proquest_journals_2350183472 |
source | EZB-FREE-00999 freely available EZB journals |
subjects | Agricultural management Basins Crop production Decision making Drought Drought index Environmental impact Environmental monitoring Environmental risk False alarms Frameworks General circulation models Ground-based observation Hydrology Monitoring Monitoring systems Precipitation Probability theory Regions Risk management Spatial distribution Stream flow Temporal distribution Variables Water utilities Weather hazards |
title | A drought monitoring framework for data-scarce regions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T12%3A03%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20drought%20monitoring%20framework%20for%20data-scarce%20regions&rft.jtitle=Journal%20of%20hydroinformatics&rft.au=Real-Rangel,%20Roberto%20A.&rft.date=2020-01-01&rft.volume=22&rft.issue=1&rft.spage=170&rft.epage=185&rft.pages=170-185&rft.issn=1464-7141&rft.eissn=1465-1734&rft_id=info:doi/10.2166/hydro.2019.020&rft_dat=%3Cproquest_cross%3E2350183472%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2350183472&rft_id=info:pmid/&rfr_iscdi=true |