Learning Unitaries by Gradient Descent
We study the hardness of learning unitary transformations in \(U(d)\) via gradient descent on time parameters of alternating operator sequences. We provide numerical evidence that, despite the non-convex nature of the loss landscape, gradient descent always converges to the target unitary when the s...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2020-02 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Bobak Toussi Kiani Lloyd, Seth Maity, Reevu |
description | We study the hardness of learning unitary transformations in \(U(d)\) via gradient descent on time parameters of alternating operator sequences. We provide numerical evidence that, despite the non-convex nature of the loss landscape, gradient descent always converges to the target unitary when the sequence contains \(d^2\) or more parameters. Rates of convergence indicate a "computational phase transition." With less than \(d^2\) parameters, gradient descent converges to a sub-optimal solution, whereas with more than \(d^2\) parameters, gradient descent converges exponentially to an optimal solution. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2350182585</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2350182585</sourcerecordid><originalsourceid>FETCH-proquest_journals_23501825853</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQ80lNLMrLzEtXCM3LLEksykwtVkiqVHAvSkzJTM0rUXBJLU4G0jwMrGmJOcWpvFCam0HZzTXE2UO3oCi_sDS1uCQ-K7-0KA8oFW9kbGpgaGFkamFqTJwqACWPLyw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2350182585</pqid></control><display><type>article</type><title>Learning Unitaries by Gradient Descent</title><source>Free E- Journals</source><creator>Bobak Toussi Kiani ; Lloyd, Seth ; Maity, Reevu</creator><creatorcontrib>Bobak Toussi Kiani ; Lloyd, Seth ; Maity, Reevu</creatorcontrib><description>We study the hardness of learning unitary transformations in \(U(d)\) via gradient descent on time parameters of alternating operator sequences. We provide numerical evidence that, despite the non-convex nature of the loss landscape, gradient descent always converges to the target unitary when the sequence contains \(d^2\) or more parameters. Rates of convergence indicate a "computational phase transition." With less than \(d^2\) parameters, gradient descent converges to a sub-optimal solution, whereas with more than \(d^2\) parameters, gradient descent converges exponentially to an optimal solution.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Controllability ; Convergence ; Critical point ; Learning ; Optimization ; Parameters ; Phase transitions ; Polynomials ; Sequences ; Stability</subject><ispartof>arXiv.org, 2020-02</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Bobak Toussi Kiani</creatorcontrib><creatorcontrib>Lloyd, Seth</creatorcontrib><creatorcontrib>Maity, Reevu</creatorcontrib><title>Learning Unitaries by Gradient Descent</title><title>arXiv.org</title><description>We study the hardness of learning unitary transformations in \(U(d)\) via gradient descent on time parameters of alternating operator sequences. We provide numerical evidence that, despite the non-convex nature of the loss landscape, gradient descent always converges to the target unitary when the sequence contains \(d^2\) or more parameters. Rates of convergence indicate a "computational phase transition." With less than \(d^2\) parameters, gradient descent converges to a sub-optimal solution, whereas with more than \(d^2\) parameters, gradient descent converges exponentially to an optimal solution.</description><subject>Algorithms</subject><subject>Controllability</subject><subject>Convergence</subject><subject>Critical point</subject><subject>Learning</subject><subject>Optimization</subject><subject>Parameters</subject><subject>Phase transitions</subject><subject>Polynomials</subject><subject>Sequences</subject><subject>Stability</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQ80lNLMrLzEtXCM3LLEksykwtVkiqVHAvSkzJTM0rUXBJLU4G0jwMrGmJOcWpvFCam0HZzTXE2UO3oCi_sDS1uCQ-K7-0KA8oFW9kbGpgaGFkamFqTJwqACWPLyw</recordid><startdate>20200218</startdate><enddate>20200218</enddate><creator>Bobak Toussi Kiani</creator><creator>Lloyd, Seth</creator><creator>Maity, Reevu</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200218</creationdate><title>Learning Unitaries by Gradient Descent</title><author>Bobak Toussi Kiani ; Lloyd, Seth ; Maity, Reevu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_23501825853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Controllability</topic><topic>Convergence</topic><topic>Critical point</topic><topic>Learning</topic><topic>Optimization</topic><topic>Parameters</topic><topic>Phase transitions</topic><topic>Polynomials</topic><topic>Sequences</topic><topic>Stability</topic><toplevel>online_resources</toplevel><creatorcontrib>Bobak Toussi Kiani</creatorcontrib><creatorcontrib>Lloyd, Seth</creatorcontrib><creatorcontrib>Maity, Reevu</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bobak Toussi Kiani</au><au>Lloyd, Seth</au><au>Maity, Reevu</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Learning Unitaries by Gradient Descent</atitle><jtitle>arXiv.org</jtitle><date>2020-02-18</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>We study the hardness of learning unitary transformations in \(U(d)\) via gradient descent on time parameters of alternating operator sequences. We provide numerical evidence that, despite the non-convex nature of the loss landscape, gradient descent always converges to the target unitary when the sequence contains \(d^2\) or more parameters. Rates of convergence indicate a "computational phase transition." With less than \(d^2\) parameters, gradient descent converges to a sub-optimal solution, whereas with more than \(d^2\) parameters, gradient descent converges exponentially to an optimal solution.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2020-02 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2350182585 |
source | Free E- Journals |
subjects | Algorithms Controllability Convergence Critical point Learning Optimization Parameters Phase transitions Polynomials Sequences Stability |
title | Learning Unitaries by Gradient Descent |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T13%3A06%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Learning%20Unitaries%20by%20Gradient%20Descent&rft.jtitle=arXiv.org&rft.au=Bobak%20Toussi%20Kiani&rft.date=2020-02-18&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2350182585%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2350182585&rft_id=info:pmid/&rfr_iscdi=true |