Applying theory to the black box: A model for empirically scoring biodata
Despite being an effective predictor of job performance, empirically keyed biodata assessments have been criticized as black box empiricism unlikely to generalize to new contexts. This paper introduces a model that challenges this perspective, explicating how biodata content, job demands, and criter...
Gespeichert in:
Veröffentlicht in: | International journal of selection and assessment 2020-03, Vol.28 (1), p.68-84 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 84 |
---|---|
container_issue | 1 |
container_start_page | 68 |
container_title | International journal of selection and assessment |
container_volume | 28 |
creator | Speer, Andrew B. Siver, Sydney R. Christiansen, Neil D. |
description | Despite being an effective predictor of job performance, empirically keyed biodata assessments have been criticized as black box empiricism unlikely to generalize to new contexts. This paper introduces a model that challenges this perspective, explicating how biodata content, job demands, and criterion variables collectively influence the construct validity, and generalizability of empirically scored biodata. Across two field studies, expected changes in scale correlations with external measures were found that coincided with changes in the contextual similarity between calibration and holdout contexts, the criteria used, and the content validity of biodata items. Collectively, this paper offers a framework that helps understand and optimize empirical biodata keying in practice, furthering confidence for their use in applied settings. |
doi_str_mv | 10.1111/ijsa.12271 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2350168623</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2350168623</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3011-2fb2e62e70d4cea64f0abd763083dbeeb582c552cd07fea8c29107baddece38f3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqWw4QsssUNK8aNxXHZRxaOoEgtAYmf5MYaUtA52KsjfkxDWzObO4twZ6SB0TsmM9nNVbZKeUcYKeoAmdC5kxrhcHKIJWYg8I0X-eoxOUtoQQjgv2AStyqapu2r3htt3CLHDbRg2bGptP7AJ39e4xNvgoMY-RAzbpoqV1XXd4WRDHIqmCk63-hQdeV0nOPvLKXq5vXle3mfrx7vVslxnlhNKM-YNA8GgIG5uQYu5J9q4QnAiuTMAJpfM5jmzjhQetLRsQUlhtHNggUvPp-hivNvE8LmH1KpN2Mdd_1IxnhMqpGC8py5HysaQUgSvmlhtdewUJWpQpQZV6ldVD9MR_qpq6P4h1erhqRw7Px4ubCo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2350168623</pqid></control><display><type>article</type><title>Applying theory to the black box: A model for empirically scoring biodata</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Speer, Andrew B. ; Siver, Sydney R. ; Christiansen, Neil D.</creator><creatorcontrib>Speer, Andrew B. ; Siver, Sydney R. ; Christiansen, Neil D.</creatorcontrib><description>Despite being an effective predictor of job performance, empirically keyed biodata assessments have been criticized as black box empiricism unlikely to generalize to new contexts. This paper introduces a model that challenges this perspective, explicating how biodata content, job demands, and criterion variables collectively influence the construct validity, and generalizability of empirically scored biodata. Across two field studies, expected changes in scale correlations with external measures were found that coincided with changes in the contextual similarity between calibration and holdout contexts, the criteria used, and the content validity of biodata items. Collectively, this paper offers a framework that helps understand and optimize empirical biodata keying in practice, furthering confidence for their use in applied settings.</description><identifier>ISSN: 0965-075X</identifier><identifier>EISSN: 1468-2389</identifier><identifier>DOI: 10.1111/ijsa.12271</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Big Data ; biodata ; empirical keying ; Selection ; trait activation theory ; validity</subject><ispartof>International journal of selection and assessment, 2020-03, Vol.28 (1), p.68-84</ispartof><rights>2019 John Wiley & Sons Ltd</rights><rights>Copyright © 2020 John Wiley & Sons Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3011-2fb2e62e70d4cea64f0abd763083dbeeb582c552cd07fea8c29107baddece38f3</citedby><cites>FETCH-LOGICAL-c3011-2fb2e62e70d4cea64f0abd763083dbeeb582c552cd07fea8c29107baddece38f3</cites><orcidid>0000-0002-3376-2103</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fijsa.12271$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fijsa.12271$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Speer, Andrew B.</creatorcontrib><creatorcontrib>Siver, Sydney R.</creatorcontrib><creatorcontrib>Christiansen, Neil D.</creatorcontrib><title>Applying theory to the black box: A model for empirically scoring biodata</title><title>International journal of selection and assessment</title><description>Despite being an effective predictor of job performance, empirically keyed biodata assessments have been criticized as black box empiricism unlikely to generalize to new contexts. This paper introduces a model that challenges this perspective, explicating how biodata content, job demands, and criterion variables collectively influence the construct validity, and generalizability of empirically scored biodata. Across two field studies, expected changes in scale correlations with external measures were found that coincided with changes in the contextual similarity between calibration and holdout contexts, the criteria used, and the content validity of biodata items. Collectively, this paper offers a framework that helps understand and optimize empirical biodata keying in practice, furthering confidence for their use in applied settings.</description><subject>Big Data</subject><subject>biodata</subject><subject>empirical keying</subject><subject>Selection</subject><subject>trait activation theory</subject><subject>validity</subject><issn>0965-075X</issn><issn>1468-2389</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqWw4QsssUNK8aNxXHZRxaOoEgtAYmf5MYaUtA52KsjfkxDWzObO4twZ6SB0TsmM9nNVbZKeUcYKeoAmdC5kxrhcHKIJWYg8I0X-eoxOUtoQQjgv2AStyqapu2r3htt3CLHDbRg2bGptP7AJ39e4xNvgoMY-RAzbpoqV1XXd4WRDHIqmCk63-hQdeV0nOPvLKXq5vXle3mfrx7vVslxnlhNKM-YNA8GgIG5uQYu5J9q4QnAiuTMAJpfM5jmzjhQetLRsQUlhtHNggUvPp-hivNvE8LmH1KpN2Mdd_1IxnhMqpGC8py5HysaQUgSvmlhtdewUJWpQpQZV6ldVD9MR_qpq6P4h1erhqRw7Px4ubCo</recordid><startdate>202003</startdate><enddate>202003</enddate><creator>Speer, Andrew B.</creator><creator>Siver, Sydney R.</creator><creator>Christiansen, Neil D.</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3376-2103</orcidid></search><sort><creationdate>202003</creationdate><title>Applying theory to the black box: A model for empirically scoring biodata</title><author>Speer, Andrew B. ; Siver, Sydney R. ; Christiansen, Neil D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3011-2fb2e62e70d4cea64f0abd763083dbeeb582c552cd07fea8c29107baddece38f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Big Data</topic><topic>biodata</topic><topic>empirical keying</topic><topic>Selection</topic><topic>trait activation theory</topic><topic>validity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Speer, Andrew B.</creatorcontrib><creatorcontrib>Siver, Sydney R.</creatorcontrib><creatorcontrib>Christiansen, Neil D.</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of selection and assessment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Speer, Andrew B.</au><au>Siver, Sydney R.</au><au>Christiansen, Neil D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Applying theory to the black box: A model for empirically scoring biodata</atitle><jtitle>International journal of selection and assessment</jtitle><date>2020-03</date><risdate>2020</risdate><volume>28</volume><issue>1</issue><spage>68</spage><epage>84</epage><pages>68-84</pages><issn>0965-075X</issn><eissn>1468-2389</eissn><abstract>Despite being an effective predictor of job performance, empirically keyed biodata assessments have been criticized as black box empiricism unlikely to generalize to new contexts. This paper introduces a model that challenges this perspective, explicating how biodata content, job demands, and criterion variables collectively influence the construct validity, and generalizability of empirically scored biodata. Across two field studies, expected changes in scale correlations with external measures were found that coincided with changes in the contextual similarity between calibration and holdout contexts, the criteria used, and the content validity of biodata items. Collectively, this paper offers a framework that helps understand and optimize empirical biodata keying in practice, furthering confidence for their use in applied settings.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/ijsa.12271</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-3376-2103</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0965-075X |
ispartof | International journal of selection and assessment, 2020-03, Vol.28 (1), p.68-84 |
issn | 0965-075X 1468-2389 |
language | eng |
recordid | cdi_proquest_journals_2350168623 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Big Data biodata empirical keying Selection trait activation theory validity |
title | Applying theory to the black box: A model for empirically scoring biodata |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T11%3A51%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Applying%20theory%20to%20the%20black%20box:%20A%20model%20for%20empirically%20scoring%20biodata&rft.jtitle=International%20journal%20of%20selection%20and%20assessment&rft.au=Speer,%20Andrew%20B.&rft.date=2020-03&rft.volume=28&rft.issue=1&rft.spage=68&rft.epage=84&rft.pages=68-84&rft.issn=0965-075X&rft.eissn=1468-2389&rft_id=info:doi/10.1111/ijsa.12271&rft_dat=%3Cproquest_cross%3E2350168623%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2350168623&rft_id=info:pmid/&rfr_iscdi=true |