Applying theory to the black box: A model for empirically scoring biodata

Despite being an effective predictor of job performance, empirically keyed biodata assessments have been criticized as black box empiricism unlikely to generalize to new contexts. This paper introduces a model that challenges this perspective, explicating how biodata content, job demands, and criter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of selection and assessment 2020-03, Vol.28 (1), p.68-84
Hauptverfasser: Speer, Andrew B., Siver, Sydney R., Christiansen, Neil D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 84
container_issue 1
container_start_page 68
container_title International journal of selection and assessment
container_volume 28
creator Speer, Andrew B.
Siver, Sydney R.
Christiansen, Neil D.
description Despite being an effective predictor of job performance, empirically keyed biodata assessments have been criticized as black box empiricism unlikely to generalize to new contexts. This paper introduces a model that challenges this perspective, explicating how biodata content, job demands, and criterion variables collectively influence the construct validity, and generalizability of empirically scored biodata. Across two field studies, expected changes in scale correlations with external measures were found that coincided with changes in the contextual similarity between calibration and holdout contexts, the criteria used, and the content validity of biodata items. Collectively, this paper offers a framework that helps understand and optimize empirical biodata keying in practice, furthering confidence for their use in applied settings.
doi_str_mv 10.1111/ijsa.12271
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2350168623</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2350168623</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3011-2fb2e62e70d4cea64f0abd763083dbeeb582c552cd07fea8c29107baddece38f3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqWw4QsssUNK8aNxXHZRxaOoEgtAYmf5MYaUtA52KsjfkxDWzObO4twZ6SB0TsmM9nNVbZKeUcYKeoAmdC5kxrhcHKIJWYg8I0X-eoxOUtoQQjgv2AStyqapu2r3htt3CLHDbRg2bGptP7AJ39e4xNvgoMY-RAzbpoqV1XXd4WRDHIqmCk63-hQdeV0nOPvLKXq5vXle3mfrx7vVslxnlhNKM-YNA8GgIG5uQYu5J9q4QnAiuTMAJpfM5jmzjhQetLRsQUlhtHNggUvPp-hivNvE8LmH1KpN2Mdd_1IxnhMqpGC8py5HysaQUgSvmlhtdewUJWpQpQZV6ldVD9MR_qpq6P4h1erhqRw7Px4ubCo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2350168623</pqid></control><display><type>article</type><title>Applying theory to the black box: A model for empirically scoring biodata</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Speer, Andrew B. ; Siver, Sydney R. ; Christiansen, Neil D.</creator><creatorcontrib>Speer, Andrew B. ; Siver, Sydney R. ; Christiansen, Neil D.</creatorcontrib><description>Despite being an effective predictor of job performance, empirically keyed biodata assessments have been criticized as black box empiricism unlikely to generalize to new contexts. This paper introduces a model that challenges this perspective, explicating how biodata content, job demands, and criterion variables collectively influence the construct validity, and generalizability of empirically scored biodata. Across two field studies, expected changes in scale correlations with external measures were found that coincided with changes in the contextual similarity between calibration and holdout contexts, the criteria used, and the content validity of biodata items. Collectively, this paper offers a framework that helps understand and optimize empirical biodata keying in practice, furthering confidence for their use in applied settings.</description><identifier>ISSN: 0965-075X</identifier><identifier>EISSN: 1468-2389</identifier><identifier>DOI: 10.1111/ijsa.12271</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Big Data ; biodata ; empirical keying ; Selection ; trait activation theory ; validity</subject><ispartof>International journal of selection and assessment, 2020-03, Vol.28 (1), p.68-84</ispartof><rights>2019 John Wiley &amp; Sons Ltd</rights><rights>Copyright © 2020 John Wiley &amp; Sons Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3011-2fb2e62e70d4cea64f0abd763083dbeeb582c552cd07fea8c29107baddece38f3</citedby><cites>FETCH-LOGICAL-c3011-2fb2e62e70d4cea64f0abd763083dbeeb582c552cd07fea8c29107baddece38f3</cites><orcidid>0000-0002-3376-2103</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fijsa.12271$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fijsa.12271$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Speer, Andrew B.</creatorcontrib><creatorcontrib>Siver, Sydney R.</creatorcontrib><creatorcontrib>Christiansen, Neil D.</creatorcontrib><title>Applying theory to the black box: A model for empirically scoring biodata</title><title>International journal of selection and assessment</title><description>Despite being an effective predictor of job performance, empirically keyed biodata assessments have been criticized as black box empiricism unlikely to generalize to new contexts. This paper introduces a model that challenges this perspective, explicating how biodata content, job demands, and criterion variables collectively influence the construct validity, and generalizability of empirically scored biodata. Across two field studies, expected changes in scale correlations with external measures were found that coincided with changes in the contextual similarity between calibration and holdout contexts, the criteria used, and the content validity of biodata items. Collectively, this paper offers a framework that helps understand and optimize empirical biodata keying in practice, furthering confidence for their use in applied settings.</description><subject>Big Data</subject><subject>biodata</subject><subject>empirical keying</subject><subject>Selection</subject><subject>trait activation theory</subject><subject>validity</subject><issn>0965-075X</issn><issn>1468-2389</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqWw4QsssUNK8aNxXHZRxaOoEgtAYmf5MYaUtA52KsjfkxDWzObO4twZ6SB0TsmM9nNVbZKeUcYKeoAmdC5kxrhcHKIJWYg8I0X-eoxOUtoQQjgv2AStyqapu2r3htt3CLHDbRg2bGptP7AJ39e4xNvgoMY-RAzbpoqV1XXd4WRDHIqmCk63-hQdeV0nOPvLKXq5vXle3mfrx7vVslxnlhNKM-YNA8GgIG5uQYu5J9q4QnAiuTMAJpfM5jmzjhQetLRsQUlhtHNggUvPp-hivNvE8LmH1KpN2Mdd_1IxnhMqpGC8py5HysaQUgSvmlhtdewUJWpQpQZV6ldVD9MR_qpq6P4h1erhqRw7Px4ubCo</recordid><startdate>202003</startdate><enddate>202003</enddate><creator>Speer, Andrew B.</creator><creator>Siver, Sydney R.</creator><creator>Christiansen, Neil D.</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3376-2103</orcidid></search><sort><creationdate>202003</creationdate><title>Applying theory to the black box: A model for empirically scoring biodata</title><author>Speer, Andrew B. ; Siver, Sydney R. ; Christiansen, Neil D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3011-2fb2e62e70d4cea64f0abd763083dbeeb582c552cd07fea8c29107baddece38f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Big Data</topic><topic>biodata</topic><topic>empirical keying</topic><topic>Selection</topic><topic>trait activation theory</topic><topic>validity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Speer, Andrew B.</creatorcontrib><creatorcontrib>Siver, Sydney R.</creatorcontrib><creatorcontrib>Christiansen, Neil D.</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of selection and assessment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Speer, Andrew B.</au><au>Siver, Sydney R.</au><au>Christiansen, Neil D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Applying theory to the black box: A model for empirically scoring biodata</atitle><jtitle>International journal of selection and assessment</jtitle><date>2020-03</date><risdate>2020</risdate><volume>28</volume><issue>1</issue><spage>68</spage><epage>84</epage><pages>68-84</pages><issn>0965-075X</issn><eissn>1468-2389</eissn><abstract>Despite being an effective predictor of job performance, empirically keyed biodata assessments have been criticized as black box empiricism unlikely to generalize to new contexts. This paper introduces a model that challenges this perspective, explicating how biodata content, job demands, and criterion variables collectively influence the construct validity, and generalizability of empirically scored biodata. Across two field studies, expected changes in scale correlations with external measures were found that coincided with changes in the contextual similarity between calibration and holdout contexts, the criteria used, and the content validity of biodata items. Collectively, this paper offers a framework that helps understand and optimize empirical biodata keying in practice, furthering confidence for their use in applied settings.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/ijsa.12271</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-3376-2103</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0965-075X
ispartof International journal of selection and assessment, 2020-03, Vol.28 (1), p.68-84
issn 0965-075X
1468-2389
language eng
recordid cdi_proquest_journals_2350168623
source Wiley Online Library Journals Frontfile Complete
subjects Big Data
biodata
empirical keying
Selection
trait activation theory
validity
title Applying theory to the black box: A model for empirically scoring biodata
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T11%3A51%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Applying%20theory%20to%20the%20black%20box:%20A%20model%20for%20empirically%20scoring%20biodata&rft.jtitle=International%20journal%20of%20selection%20and%20assessment&rft.au=Speer,%20Andrew%20B.&rft.date=2020-03&rft.volume=28&rft.issue=1&rft.spage=68&rft.epage=84&rft.pages=68-84&rft.issn=0965-075X&rft.eissn=1468-2389&rft_id=info:doi/10.1111/ijsa.12271&rft_dat=%3Cproquest_cross%3E2350168623%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2350168623&rft_id=info:pmid/&rfr_iscdi=true