Limits of adiabatic clocking in quantum-dot cellular automata

Ultimate bounds on the maximum operating frequency of networks of Quantum-dot Cellular Automata (QCA) devices have yet to be established. We consider the adiabaticity of such networks in the two-state approximation where clocking is achieved via modulation of the interdot tunneling barriers. Estimat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2020-02, Vol.127 (5)
Hauptverfasser: Retallick, Jacob, Walus, Konrad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page
container_title Journal of applied physics
container_volume 127
creator Retallick, Jacob
Walus, Konrad
description Ultimate bounds on the maximum operating frequency of networks of Quantum-dot Cellular Automata (QCA) devices have yet to be established. We consider the adiabaticity of such networks in the two-state approximation where clocking is achieved via modulation of the interdot tunneling barriers. Estimates of the maximum operating frequency that would allow a 99% probability of observing the correct logical output are presented for a subset of the basic components used in QCA network design. Simulations are performed both in the coherent limit and for a simple dissipative model. We approach the problem of tunnel-based clocking from the perspective of quantum annealing and present an improved clocking schedule allowing for faster operation. Using an analytical solution for driven QCA wires, we show that the maximum operating frequency in the coherent limit falls off with the square of the wire length, potentially limiting the size of clocked regions.
doi_str_mv 10.1063/1.5135308
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2350166429</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2350166429</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-d78259e0300031540f5b5ddc9f7d8f3ecea30368790fb302b733371d941e10e63</originalsourceid><addsrcrecordid>eNqd0EtLxDAUBeAgCo6jC_9BwZVCx5veSdMsXMjgCwbc6DqkeUjGtplJUsF_b2UG3Ls6m49zuYeQSwoLCjXe0gWjyBCaIzKj0IiSMwbHZAZQ0bIRXJySs5Q2AJQ2KGbkbu17n1MRXKGMV63KXhe6C_rTDx-FH4rdqIY89qUJudC268ZOxUKNOfQqq3Ny4lSX7MUh5-T98eFt9VyuX59eVvfrUmNd5dLwpmLCAgIAUrYEx1pmjBaOm8ah1VYhYN1wAa5FqFqOiJwasaSWgq1xTq72vdsYdqNNWW7CGIfppKyQAa3rZSUmdb1XOoaUonVyG32v4rekIH_XkVQe1pnszd4m7fP0dBj-h79C_INyaxz-AFyxcRY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2350166429</pqid></control><display><type>article</type><title>Limits of adiabatic clocking in quantum-dot cellular automata</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Retallick, Jacob ; Walus, Konrad</creator><creatorcontrib>Retallick, Jacob ; Walus, Konrad</creatorcontrib><description>Ultimate bounds on the maximum operating frequency of networks of Quantum-dot Cellular Automata (QCA) devices have yet to be established. We consider the adiabaticity of such networks in the two-state approximation where clocking is achieved via modulation of the interdot tunneling barriers. Estimates of the maximum operating frequency that would allow a 99% probability of observing the correct logical output are presented for a subset of the basic components used in QCA network design. Simulations are performed both in the coherent limit and for a simple dissipative model. We approach the problem of tunnel-based clocking from the perspective of quantum annealing and present an improved clocking schedule allowing for faster operation. Using an analytical solution for driven QCA wires, we show that the maximum operating frequency in the coherent limit falls off with the square of the wire length, potentially limiting the size of clocked regions.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.5135308</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Adiabatic flow ; Applied physics ; Cellular automata ; Cellular communication ; Computer simulation ; Exact solutions ; Quantum dots ; Schedules</subject><ispartof>Journal of applied physics, 2020-02, Vol.127 (5)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-d78259e0300031540f5b5ddc9f7d8f3ecea30368790fb302b733371d941e10e63</citedby><cites>FETCH-LOGICAL-c362t-d78259e0300031540f5b5ddc9f7d8f3ecea30368790fb302b733371d941e10e63</cites><orcidid>0000-0002-2620-7443 ; 0000-0002-3639-6858</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/1.5135308$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Retallick, Jacob</creatorcontrib><creatorcontrib>Walus, Konrad</creatorcontrib><title>Limits of adiabatic clocking in quantum-dot cellular automata</title><title>Journal of applied physics</title><description>Ultimate bounds on the maximum operating frequency of networks of Quantum-dot Cellular Automata (QCA) devices have yet to be established. We consider the adiabaticity of such networks in the two-state approximation where clocking is achieved via modulation of the interdot tunneling barriers. Estimates of the maximum operating frequency that would allow a 99% probability of observing the correct logical output are presented for a subset of the basic components used in QCA network design. Simulations are performed both in the coherent limit and for a simple dissipative model. We approach the problem of tunnel-based clocking from the perspective of quantum annealing and present an improved clocking schedule allowing for faster operation. Using an analytical solution for driven QCA wires, we show that the maximum operating frequency in the coherent limit falls off with the square of the wire length, potentially limiting the size of clocked regions.</description><subject>Adiabatic flow</subject><subject>Applied physics</subject><subject>Cellular automata</subject><subject>Cellular communication</subject><subject>Computer simulation</subject><subject>Exact solutions</subject><subject>Quantum dots</subject><subject>Schedules</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqd0EtLxDAUBeAgCo6jC_9BwZVCx5veSdMsXMjgCwbc6DqkeUjGtplJUsF_b2UG3Ls6m49zuYeQSwoLCjXe0gWjyBCaIzKj0IiSMwbHZAZQ0bIRXJySs5Q2AJQ2KGbkbu17n1MRXKGMV63KXhe6C_rTDx-FH4rdqIY89qUJudC268ZOxUKNOfQqq3Ny4lSX7MUh5-T98eFt9VyuX59eVvfrUmNd5dLwpmLCAgIAUrYEx1pmjBaOm8ah1VYhYN1wAa5FqFqOiJwasaSWgq1xTq72vdsYdqNNWW7CGIfppKyQAa3rZSUmdb1XOoaUonVyG32v4rekIH_XkVQe1pnszd4m7fP0dBj-h79C_INyaxz-AFyxcRY</recordid><startdate>20200207</startdate><enddate>20200207</enddate><creator>Retallick, Jacob</creator><creator>Walus, Konrad</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2620-7443</orcidid><orcidid>https://orcid.org/0000-0002-3639-6858</orcidid></search><sort><creationdate>20200207</creationdate><title>Limits of adiabatic clocking in quantum-dot cellular automata</title><author>Retallick, Jacob ; Walus, Konrad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-d78259e0300031540f5b5ddc9f7d8f3ecea30368790fb302b733371d941e10e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adiabatic flow</topic><topic>Applied physics</topic><topic>Cellular automata</topic><topic>Cellular communication</topic><topic>Computer simulation</topic><topic>Exact solutions</topic><topic>Quantum dots</topic><topic>Schedules</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Retallick, Jacob</creatorcontrib><creatorcontrib>Walus, Konrad</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Retallick, Jacob</au><au>Walus, Konrad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Limits of adiabatic clocking in quantum-dot cellular automata</atitle><jtitle>Journal of applied physics</jtitle><date>2020-02-07</date><risdate>2020</risdate><volume>127</volume><issue>5</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>Ultimate bounds on the maximum operating frequency of networks of Quantum-dot Cellular Automata (QCA) devices have yet to be established. We consider the adiabaticity of such networks in the two-state approximation where clocking is achieved via modulation of the interdot tunneling barriers. Estimates of the maximum operating frequency that would allow a 99% probability of observing the correct logical output are presented for a subset of the basic components used in QCA network design. Simulations are performed both in the coherent limit and for a simple dissipative model. We approach the problem of tunnel-based clocking from the perspective of quantum annealing and present an improved clocking schedule allowing for faster operation. Using an analytical solution for driven QCA wires, we show that the maximum operating frequency in the coherent limit falls off with the square of the wire length, potentially limiting the size of clocked regions.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5135308</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-2620-7443</orcidid><orcidid>https://orcid.org/0000-0002-3639-6858</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2020-02, Vol.127 (5)
issn 0021-8979
1089-7550
language eng
recordid cdi_proquest_journals_2350166429
source AIP Journals Complete; Alma/SFX Local Collection
subjects Adiabatic flow
Applied physics
Cellular automata
Cellular communication
Computer simulation
Exact solutions
Quantum dots
Schedules
title Limits of adiabatic clocking in quantum-dot cellular automata
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T05%3A30%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Limits%20of%20adiabatic%20clocking%20in%20quantum-dot%20cellular%20automata&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Retallick,%20Jacob&rft.date=2020-02-07&rft.volume=127&rft.issue=5&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.5135308&rft_dat=%3Cproquest_cross%3E2350166429%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2350166429&rft_id=info:pmid/&rfr_iscdi=true