Towards a Low-SWaP 1024-Beam Digital Array: A 32-Beam Subsystem at 5.8 GHz
Millimeter-wave communications require multibeam beamforming to utilize wireless channels that suffer from obstructions, path loss, and multipath effects. Digital multibeam beamforming has maximum degrees of freedom compared to analog-phased arrays. However, circuit complexity and power consumption...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on antennas and propagation 2020-02, Vol.68 (2), p.900-912 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 912 |
---|---|
container_issue | 2 |
container_start_page | 900 |
container_title | IEEE transactions on antennas and propagation |
container_volume | 68 |
creator | Madanayake, Arjuna Mandal, Soumyajit Rappaport, Theodore S. Ariyarathna, Viduneth Madishetty, Suresh Pulipati, Sravan Cintra, Renato J. Coelho, Diego Oliviera, Raiza Bayer, Fabio M. Belostotski, Leonid |
description | Millimeter-wave communications require multibeam beamforming to utilize wireless channels that suffer from obstructions, path loss, and multipath effects. Digital multibeam beamforming has maximum degrees of freedom compared to analog-phased arrays. However, circuit complexity and power consumption are important constraints for digital multibeam systems. A low-complexity digital computing architecture is proposed for a multiplication-free 32-point linear transform that approximates multiple simultaneous radio frequency (RF) beams similar to a discrete Fourier transform (DFT). Arithmetic complexity due to multiplication is reduced from the fast Fourier transform (FFT) complexity of O(N log N) for DFT realizations, down to zero, thus yielding a 46% and 55% reduction in chip area and dynamic power consumption, respectively, for the N = 32 case considered. This article describes the proposed 32-point DFT approximation targeting 1024 beams using a 2-D array and shows the multiplierless approximation and its mapping to a 32-beam subsystem consisting of 5.8 GHz antennas that can be used for generating 1024 digital beams without multiplications. Real-time beam computation is achieved using a Xilinx field-programmable gate array (FPGA) at 120 MHz bandwidth per beam. Theoretical beam performance is compared with measured RF patterns from both a fixed-point FFT and the proposed multiplier-free algorithm and is in good agreement. |
doi_str_mv | 10.1109/TAP.2019.2938704 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2350154701</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8826444</ieee_id><sourcerecordid>2350154701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-81c5c2cea4697dd8cf49aa056b6342301f4f653945a2764d934c64bec2f63bfc3</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKf3gjcBr1vzcZIm3tWpmzJwsInehTRNpWOzM-kY89fb0eHV4eU87znwIHRNSUop0XeLfJYyQnXKNFcZgRM0oEKohDFGT9GAEKoSzeTnObqIcdlFUAAD9LpodjaUEVs8bXbJ_MPOMCUMkgdv1_ix_qpbu8J5CHZ_j3PMWb-Yb4u4j61fY9tikSo8nvxeorPKrqK_Os4hen9-WowmyfRt_DLKp4njnLeJok445rwFqbOyVK4CbS0RspAcGCe0gkoKrkFYlkkoNQcnofCOVZIXleNDdNvf3YTmZ-tja5bNNnx3Lw3jglABGaEdRXrKhSbG4CuzCfXahr2hxByMmc6YORgzR2Nd5aav1N77f1wpJgGA_wEs-GJk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2350154701</pqid></control><display><type>article</type><title>Towards a Low-SWaP 1024-Beam Digital Array: A 32-Beam Subsystem at 5.8 GHz</title><source>IEEE Electronic Library (IEL)</source><creator>Madanayake, Arjuna ; Mandal, Soumyajit ; Rappaport, Theodore S. ; Ariyarathna, Viduneth ; Madishetty, Suresh ; Pulipati, Sravan ; Cintra, Renato J. ; Coelho, Diego ; Oliviera, Raiza ; Bayer, Fabio M. ; Belostotski, Leonid</creator><creatorcontrib>Madanayake, Arjuna ; Mandal, Soumyajit ; Rappaport, Theodore S. ; Ariyarathna, Viduneth ; Madishetty, Suresh ; Pulipati, Sravan ; Cintra, Renato J. ; Coelho, Diego ; Oliviera, Raiza ; Bayer, Fabio M. ; Belostotski, Leonid</creatorcontrib><description>Millimeter-wave communications require multibeam beamforming to utilize wireless channels that suffer from obstructions, path loss, and multipath effects. Digital multibeam beamforming has maximum degrees of freedom compared to analog-phased arrays. However, circuit complexity and power consumption are important constraints for digital multibeam systems. A low-complexity digital computing architecture is proposed for a multiplication-free 32-point linear transform that approximates multiple simultaneous radio frequency (RF) beams similar to a discrete Fourier transform (DFT). Arithmetic complexity due to multiplication is reduced from the fast Fourier transform (FFT) complexity of O(N log N) for DFT realizations, down to zero, thus yielding a 46% and 55% reduction in chip area and dynamic power consumption, respectively, for the N = 32 case considered. This article describes the proposed 32-point DFT approximation targeting 1024 beams using a 2-D array and shows the multiplierless approximation and its mapping to a 32-beam subsystem consisting of 5.8 GHz antennas that can be used for generating 1024 digital beams without multiplications. Real-time beam computation is achieved using a Xilinx field-programmable gate array (FPGA) at 120 MHz bandwidth per beam. Theoretical beam performance is compared with measured RF patterns from both a fixed-point FFT and the proposed multiplier-free algorithm and is in good agreement.</description><identifier>ISSN: 0018-926X</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/TAP.2019.2938704</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>5G mobile communication ; Algorithms ; Analog circuits ; Antenna arrays ; Apertures ; Approximate beamforming ; Approximation ; Array signal processing ; Bandwidths ; Beamforming ; Beams (radiation) ; Complexity ; Computer architecture ; digital arrays ; Digital computers ; Discrete Fourier transforms ; Fast Fourier transformations ; Field programmable gate arrays ; Fixed point arithmetic ; Fourier transforms ; Linear transformations ; Mapping ; Mathematical analysis ; Millimeter waves ; multibeams ; Multiplication ; Obstructions ; Phased arrays ; Power consumption ; Radio frequency ; Subsystems ; Wireless communication</subject><ispartof>IEEE transactions on antennas and propagation, 2020-02, Vol.68 (2), p.900-912</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-81c5c2cea4697dd8cf49aa056b6342301f4f653945a2764d934c64bec2f63bfc3</citedby><cites>FETCH-LOGICAL-c333t-81c5c2cea4697dd8cf49aa056b6342301f4f653945a2764d934c64bec2f63bfc3</cites><orcidid>0000-0003-4513-9607 ; 0000-0002-5228-6907 ; 0000-0001-7449-9957 ; 0000-0001-8128-4647 ; 0000-0003-2240-1924 ; 0000-0003-3289-9308 ; 0000-0002-4579-6757 ; 0000-0001-9070-2337 ; 0000-0002-1464-0805</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8826444$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8826444$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Madanayake, Arjuna</creatorcontrib><creatorcontrib>Mandal, Soumyajit</creatorcontrib><creatorcontrib>Rappaport, Theodore S.</creatorcontrib><creatorcontrib>Ariyarathna, Viduneth</creatorcontrib><creatorcontrib>Madishetty, Suresh</creatorcontrib><creatorcontrib>Pulipati, Sravan</creatorcontrib><creatorcontrib>Cintra, Renato J.</creatorcontrib><creatorcontrib>Coelho, Diego</creatorcontrib><creatorcontrib>Oliviera, Raiza</creatorcontrib><creatorcontrib>Bayer, Fabio M.</creatorcontrib><creatorcontrib>Belostotski, Leonid</creatorcontrib><title>Towards a Low-SWaP 1024-Beam Digital Array: A 32-Beam Subsystem at 5.8 GHz</title><title>IEEE transactions on antennas and propagation</title><addtitle>TAP</addtitle><description>Millimeter-wave communications require multibeam beamforming to utilize wireless channels that suffer from obstructions, path loss, and multipath effects. Digital multibeam beamforming has maximum degrees of freedom compared to analog-phased arrays. However, circuit complexity and power consumption are important constraints for digital multibeam systems. A low-complexity digital computing architecture is proposed for a multiplication-free 32-point linear transform that approximates multiple simultaneous radio frequency (RF) beams similar to a discrete Fourier transform (DFT). Arithmetic complexity due to multiplication is reduced from the fast Fourier transform (FFT) complexity of O(N log N) for DFT realizations, down to zero, thus yielding a 46% and 55% reduction in chip area and dynamic power consumption, respectively, for the N = 32 case considered. This article describes the proposed 32-point DFT approximation targeting 1024 beams using a 2-D array and shows the multiplierless approximation and its mapping to a 32-beam subsystem consisting of 5.8 GHz antennas that can be used for generating 1024 digital beams without multiplications. Real-time beam computation is achieved using a Xilinx field-programmable gate array (FPGA) at 120 MHz bandwidth per beam. Theoretical beam performance is compared with measured RF patterns from both a fixed-point FFT and the proposed multiplier-free algorithm and is in good agreement.</description><subject>5G mobile communication</subject><subject>Algorithms</subject><subject>Analog circuits</subject><subject>Antenna arrays</subject><subject>Apertures</subject><subject>Approximate beamforming</subject><subject>Approximation</subject><subject>Array signal processing</subject><subject>Bandwidths</subject><subject>Beamforming</subject><subject>Beams (radiation)</subject><subject>Complexity</subject><subject>Computer architecture</subject><subject>digital arrays</subject><subject>Digital computers</subject><subject>Discrete Fourier transforms</subject><subject>Fast Fourier transformations</subject><subject>Field programmable gate arrays</subject><subject>Fixed point arithmetic</subject><subject>Fourier transforms</subject><subject>Linear transformations</subject><subject>Mapping</subject><subject>Mathematical analysis</subject><subject>Millimeter waves</subject><subject>multibeams</subject><subject>Multiplication</subject><subject>Obstructions</subject><subject>Phased arrays</subject><subject>Power consumption</subject><subject>Radio frequency</subject><subject>Subsystems</subject><subject>Wireless communication</subject><issn>0018-926X</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAUhoMoOKf3gjcBr1vzcZIm3tWpmzJwsInehTRNpWOzM-kY89fb0eHV4eU87znwIHRNSUop0XeLfJYyQnXKNFcZgRM0oEKohDFGT9GAEKoSzeTnObqIcdlFUAAD9LpodjaUEVs8bXbJ_MPOMCUMkgdv1_ix_qpbu8J5CHZ_j3PMWb-Yb4u4j61fY9tikSo8nvxeorPKrqK_Os4hen9-WowmyfRt_DLKp4njnLeJok445rwFqbOyVK4CbS0RspAcGCe0gkoKrkFYlkkoNQcnofCOVZIXleNDdNvf3YTmZ-tja5bNNnx3Lw3jglABGaEdRXrKhSbG4CuzCfXahr2hxByMmc6YORgzR2Nd5aav1N77f1wpJgGA_wEs-GJk</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Madanayake, Arjuna</creator><creator>Mandal, Soumyajit</creator><creator>Rappaport, Theodore S.</creator><creator>Ariyarathna, Viduneth</creator><creator>Madishetty, Suresh</creator><creator>Pulipati, Sravan</creator><creator>Cintra, Renato J.</creator><creator>Coelho, Diego</creator><creator>Oliviera, Raiza</creator><creator>Bayer, Fabio M.</creator><creator>Belostotski, Leonid</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4513-9607</orcidid><orcidid>https://orcid.org/0000-0002-5228-6907</orcidid><orcidid>https://orcid.org/0000-0001-7449-9957</orcidid><orcidid>https://orcid.org/0000-0001-8128-4647</orcidid><orcidid>https://orcid.org/0000-0003-2240-1924</orcidid><orcidid>https://orcid.org/0000-0003-3289-9308</orcidid><orcidid>https://orcid.org/0000-0002-4579-6757</orcidid><orcidid>https://orcid.org/0000-0001-9070-2337</orcidid><orcidid>https://orcid.org/0000-0002-1464-0805</orcidid></search><sort><creationdate>20200201</creationdate><title>Towards a Low-SWaP 1024-Beam Digital Array: A 32-Beam Subsystem at 5.8 GHz</title><author>Madanayake, Arjuna ; Mandal, Soumyajit ; Rappaport, Theodore S. ; Ariyarathna, Viduneth ; Madishetty, Suresh ; Pulipati, Sravan ; Cintra, Renato J. ; Coelho, Diego ; Oliviera, Raiza ; Bayer, Fabio M. ; Belostotski, Leonid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-81c5c2cea4697dd8cf49aa056b6342301f4f653945a2764d934c64bec2f63bfc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>5G mobile communication</topic><topic>Algorithms</topic><topic>Analog circuits</topic><topic>Antenna arrays</topic><topic>Apertures</topic><topic>Approximate beamforming</topic><topic>Approximation</topic><topic>Array signal processing</topic><topic>Bandwidths</topic><topic>Beamforming</topic><topic>Beams (radiation)</topic><topic>Complexity</topic><topic>Computer architecture</topic><topic>digital arrays</topic><topic>Digital computers</topic><topic>Discrete Fourier transforms</topic><topic>Fast Fourier transformations</topic><topic>Field programmable gate arrays</topic><topic>Fixed point arithmetic</topic><topic>Fourier transforms</topic><topic>Linear transformations</topic><topic>Mapping</topic><topic>Mathematical analysis</topic><topic>Millimeter waves</topic><topic>multibeams</topic><topic>Multiplication</topic><topic>Obstructions</topic><topic>Phased arrays</topic><topic>Power consumption</topic><topic>Radio frequency</topic><topic>Subsystems</topic><topic>Wireless communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Madanayake, Arjuna</creatorcontrib><creatorcontrib>Mandal, Soumyajit</creatorcontrib><creatorcontrib>Rappaport, Theodore S.</creatorcontrib><creatorcontrib>Ariyarathna, Viduneth</creatorcontrib><creatorcontrib>Madishetty, Suresh</creatorcontrib><creatorcontrib>Pulipati, Sravan</creatorcontrib><creatorcontrib>Cintra, Renato J.</creatorcontrib><creatorcontrib>Coelho, Diego</creatorcontrib><creatorcontrib>Oliviera, Raiza</creatorcontrib><creatorcontrib>Bayer, Fabio M.</creatorcontrib><creatorcontrib>Belostotski, Leonid</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Madanayake, Arjuna</au><au>Mandal, Soumyajit</au><au>Rappaport, Theodore S.</au><au>Ariyarathna, Viduneth</au><au>Madishetty, Suresh</au><au>Pulipati, Sravan</au><au>Cintra, Renato J.</au><au>Coelho, Diego</au><au>Oliviera, Raiza</au><au>Bayer, Fabio M.</au><au>Belostotski, Leonid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards a Low-SWaP 1024-Beam Digital Array: A 32-Beam Subsystem at 5.8 GHz</atitle><jtitle>IEEE transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>2020-02-01</date><risdate>2020</risdate><volume>68</volume><issue>2</issue><spage>900</spage><epage>912</epage><pages>900-912</pages><issn>0018-926X</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract>Millimeter-wave communications require multibeam beamforming to utilize wireless channels that suffer from obstructions, path loss, and multipath effects. Digital multibeam beamforming has maximum degrees of freedom compared to analog-phased arrays. However, circuit complexity and power consumption are important constraints for digital multibeam systems. A low-complexity digital computing architecture is proposed for a multiplication-free 32-point linear transform that approximates multiple simultaneous radio frequency (RF) beams similar to a discrete Fourier transform (DFT). Arithmetic complexity due to multiplication is reduced from the fast Fourier transform (FFT) complexity of O(N log N) for DFT realizations, down to zero, thus yielding a 46% and 55% reduction in chip area and dynamic power consumption, respectively, for the N = 32 case considered. This article describes the proposed 32-point DFT approximation targeting 1024 beams using a 2-D array and shows the multiplierless approximation and its mapping to a 32-beam subsystem consisting of 5.8 GHz antennas that can be used for generating 1024 digital beams without multiplications. Real-time beam computation is achieved using a Xilinx field-programmable gate array (FPGA) at 120 MHz bandwidth per beam. Theoretical beam performance is compared with measured RF patterns from both a fixed-point FFT and the proposed multiplier-free algorithm and is in good agreement.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAP.2019.2938704</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-4513-9607</orcidid><orcidid>https://orcid.org/0000-0002-5228-6907</orcidid><orcidid>https://orcid.org/0000-0001-7449-9957</orcidid><orcidid>https://orcid.org/0000-0001-8128-4647</orcidid><orcidid>https://orcid.org/0000-0003-2240-1924</orcidid><orcidid>https://orcid.org/0000-0003-3289-9308</orcidid><orcidid>https://orcid.org/0000-0002-4579-6757</orcidid><orcidid>https://orcid.org/0000-0001-9070-2337</orcidid><orcidid>https://orcid.org/0000-0002-1464-0805</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-926X |
ispartof | IEEE transactions on antennas and propagation, 2020-02, Vol.68 (2), p.900-912 |
issn | 0018-926X 1558-2221 |
language | eng |
recordid | cdi_proquest_journals_2350154701 |
source | IEEE Electronic Library (IEL) |
subjects | 5G mobile communication Algorithms Analog circuits Antenna arrays Apertures Approximate beamforming Approximation Array signal processing Bandwidths Beamforming Beams (radiation) Complexity Computer architecture digital arrays Digital computers Discrete Fourier transforms Fast Fourier transformations Field programmable gate arrays Fixed point arithmetic Fourier transforms Linear transformations Mapping Mathematical analysis Millimeter waves multibeams Multiplication Obstructions Phased arrays Power consumption Radio frequency Subsystems Wireless communication |
title | Towards a Low-SWaP 1024-Beam Digital Array: A 32-Beam Subsystem at 5.8 GHz |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T22%3A22%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20a%20Low-SWaP%201024-Beam%20Digital%20Array:%20A%2032-Beam%20Subsystem%20at%205.8%20GHz&rft.jtitle=IEEE%20transactions%20on%20antennas%20and%20propagation&rft.au=Madanayake,%20Arjuna&rft.date=2020-02-01&rft.volume=68&rft.issue=2&rft.spage=900&rft.epage=912&rft.pages=900-912&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/TAP.2019.2938704&rft_dat=%3Cproquest_RIE%3E2350154701%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2350154701&rft_id=info:pmid/&rft_ieee_id=8826444&rfr_iscdi=true |