Towards a Low-SWaP 1024-Beam Digital Array: A 32-Beam Subsystem at 5.8 GHz

Millimeter-wave communications require multibeam beamforming to utilize wireless channels that suffer from obstructions, path loss, and multipath effects. Digital multibeam beamforming has maximum degrees of freedom compared to analog-phased arrays. However, circuit complexity and power consumption...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on antennas and propagation 2020-02, Vol.68 (2), p.900-912
Hauptverfasser: Madanayake, Arjuna, Mandal, Soumyajit, Rappaport, Theodore S., Ariyarathna, Viduneth, Madishetty, Suresh, Pulipati, Sravan, Cintra, Renato J., Coelho, Diego, Oliviera, Raiza, Bayer, Fabio M., Belostotski, Leonid
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 912
container_issue 2
container_start_page 900
container_title IEEE transactions on antennas and propagation
container_volume 68
creator Madanayake, Arjuna
Mandal, Soumyajit
Rappaport, Theodore S.
Ariyarathna, Viduneth
Madishetty, Suresh
Pulipati, Sravan
Cintra, Renato J.
Coelho, Diego
Oliviera, Raiza
Bayer, Fabio M.
Belostotski, Leonid
description Millimeter-wave communications require multibeam beamforming to utilize wireless channels that suffer from obstructions, path loss, and multipath effects. Digital multibeam beamforming has maximum degrees of freedom compared to analog-phased arrays. However, circuit complexity and power consumption are important constraints for digital multibeam systems. A low-complexity digital computing architecture is proposed for a multiplication-free 32-point linear transform that approximates multiple simultaneous radio frequency (RF) beams similar to a discrete Fourier transform (DFT). Arithmetic complexity due to multiplication is reduced from the fast Fourier transform (FFT) complexity of O(N log N) for DFT realizations, down to zero, thus yielding a 46% and 55% reduction in chip area and dynamic power consumption, respectively, for the N = 32 case considered. This article describes the proposed 32-point DFT approximation targeting 1024 beams using a 2-D array and shows the multiplierless approximation and its mapping to a 32-beam subsystem consisting of 5.8 GHz antennas that can be used for generating 1024 digital beams without multiplications. Real-time beam computation is achieved using a Xilinx field-programmable gate array (FPGA) at 120 MHz bandwidth per beam. Theoretical beam performance is compared with measured RF patterns from both a fixed-point FFT and the proposed multiplier-free algorithm and is in good agreement.
doi_str_mv 10.1109/TAP.2019.2938704
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2350154701</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8826444</ieee_id><sourcerecordid>2350154701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-81c5c2cea4697dd8cf49aa056b6342301f4f653945a2764d934c64bec2f63bfc3</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKf3gjcBr1vzcZIm3tWpmzJwsInehTRNpWOzM-kY89fb0eHV4eU87znwIHRNSUop0XeLfJYyQnXKNFcZgRM0oEKohDFGT9GAEKoSzeTnObqIcdlFUAAD9LpodjaUEVs8bXbJ_MPOMCUMkgdv1_ix_qpbu8J5CHZ_j3PMWb-Yb4u4j61fY9tikSo8nvxeorPKrqK_Os4hen9-WowmyfRt_DLKp4njnLeJok445rwFqbOyVK4CbS0RspAcGCe0gkoKrkFYlkkoNQcnofCOVZIXleNDdNvf3YTmZ-tja5bNNnx3Lw3jglABGaEdRXrKhSbG4CuzCfXahr2hxByMmc6YORgzR2Nd5aav1N77f1wpJgGA_wEs-GJk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2350154701</pqid></control><display><type>article</type><title>Towards a Low-SWaP 1024-Beam Digital Array: A 32-Beam Subsystem at 5.8 GHz</title><source>IEEE Electronic Library (IEL)</source><creator>Madanayake, Arjuna ; Mandal, Soumyajit ; Rappaport, Theodore S. ; Ariyarathna, Viduneth ; Madishetty, Suresh ; Pulipati, Sravan ; Cintra, Renato J. ; Coelho, Diego ; Oliviera, Raiza ; Bayer, Fabio M. ; Belostotski, Leonid</creator><creatorcontrib>Madanayake, Arjuna ; Mandal, Soumyajit ; Rappaport, Theodore S. ; Ariyarathna, Viduneth ; Madishetty, Suresh ; Pulipati, Sravan ; Cintra, Renato J. ; Coelho, Diego ; Oliviera, Raiza ; Bayer, Fabio M. ; Belostotski, Leonid</creatorcontrib><description>Millimeter-wave communications require multibeam beamforming to utilize wireless channels that suffer from obstructions, path loss, and multipath effects. Digital multibeam beamforming has maximum degrees of freedom compared to analog-phased arrays. However, circuit complexity and power consumption are important constraints for digital multibeam systems. A low-complexity digital computing architecture is proposed for a multiplication-free 32-point linear transform that approximates multiple simultaneous radio frequency (RF) beams similar to a discrete Fourier transform (DFT). Arithmetic complexity due to multiplication is reduced from the fast Fourier transform (FFT) complexity of O(N log N) for DFT realizations, down to zero, thus yielding a 46% and 55% reduction in chip area and dynamic power consumption, respectively, for the N = 32 case considered. This article describes the proposed 32-point DFT approximation targeting 1024 beams using a 2-D array and shows the multiplierless approximation and its mapping to a 32-beam subsystem consisting of 5.8 GHz antennas that can be used for generating 1024 digital beams without multiplications. Real-time beam computation is achieved using a Xilinx field-programmable gate array (FPGA) at 120 MHz bandwidth per beam. Theoretical beam performance is compared with measured RF patterns from both a fixed-point FFT and the proposed multiplier-free algorithm and is in good agreement.</description><identifier>ISSN: 0018-926X</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/TAP.2019.2938704</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>5G mobile communication ; Algorithms ; Analog circuits ; Antenna arrays ; Apertures ; Approximate beamforming ; Approximation ; Array signal processing ; Bandwidths ; Beamforming ; Beams (radiation) ; Complexity ; Computer architecture ; digital arrays ; Digital computers ; Discrete Fourier transforms ; Fast Fourier transformations ; Field programmable gate arrays ; Fixed point arithmetic ; Fourier transforms ; Linear transformations ; Mapping ; Mathematical analysis ; Millimeter waves ; multibeams ; Multiplication ; Obstructions ; Phased arrays ; Power consumption ; Radio frequency ; Subsystems ; Wireless communication</subject><ispartof>IEEE transactions on antennas and propagation, 2020-02, Vol.68 (2), p.900-912</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-81c5c2cea4697dd8cf49aa056b6342301f4f653945a2764d934c64bec2f63bfc3</citedby><cites>FETCH-LOGICAL-c333t-81c5c2cea4697dd8cf49aa056b6342301f4f653945a2764d934c64bec2f63bfc3</cites><orcidid>0000-0003-4513-9607 ; 0000-0002-5228-6907 ; 0000-0001-7449-9957 ; 0000-0001-8128-4647 ; 0000-0003-2240-1924 ; 0000-0003-3289-9308 ; 0000-0002-4579-6757 ; 0000-0001-9070-2337 ; 0000-0002-1464-0805</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8826444$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8826444$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Madanayake, Arjuna</creatorcontrib><creatorcontrib>Mandal, Soumyajit</creatorcontrib><creatorcontrib>Rappaport, Theodore S.</creatorcontrib><creatorcontrib>Ariyarathna, Viduneth</creatorcontrib><creatorcontrib>Madishetty, Suresh</creatorcontrib><creatorcontrib>Pulipati, Sravan</creatorcontrib><creatorcontrib>Cintra, Renato J.</creatorcontrib><creatorcontrib>Coelho, Diego</creatorcontrib><creatorcontrib>Oliviera, Raiza</creatorcontrib><creatorcontrib>Bayer, Fabio M.</creatorcontrib><creatorcontrib>Belostotski, Leonid</creatorcontrib><title>Towards a Low-SWaP 1024-Beam Digital Array: A 32-Beam Subsystem at 5.8 GHz</title><title>IEEE transactions on antennas and propagation</title><addtitle>TAP</addtitle><description>Millimeter-wave communications require multibeam beamforming to utilize wireless channels that suffer from obstructions, path loss, and multipath effects. Digital multibeam beamforming has maximum degrees of freedom compared to analog-phased arrays. However, circuit complexity and power consumption are important constraints for digital multibeam systems. A low-complexity digital computing architecture is proposed for a multiplication-free 32-point linear transform that approximates multiple simultaneous radio frequency (RF) beams similar to a discrete Fourier transform (DFT). Arithmetic complexity due to multiplication is reduced from the fast Fourier transform (FFT) complexity of O(N log N) for DFT realizations, down to zero, thus yielding a 46% and 55% reduction in chip area and dynamic power consumption, respectively, for the N = 32 case considered. This article describes the proposed 32-point DFT approximation targeting 1024 beams using a 2-D array and shows the multiplierless approximation and its mapping to a 32-beam subsystem consisting of 5.8 GHz antennas that can be used for generating 1024 digital beams without multiplications. Real-time beam computation is achieved using a Xilinx field-programmable gate array (FPGA) at 120 MHz bandwidth per beam. Theoretical beam performance is compared with measured RF patterns from both a fixed-point FFT and the proposed multiplier-free algorithm and is in good agreement.</description><subject>5G mobile communication</subject><subject>Algorithms</subject><subject>Analog circuits</subject><subject>Antenna arrays</subject><subject>Apertures</subject><subject>Approximate beamforming</subject><subject>Approximation</subject><subject>Array signal processing</subject><subject>Bandwidths</subject><subject>Beamforming</subject><subject>Beams (radiation)</subject><subject>Complexity</subject><subject>Computer architecture</subject><subject>digital arrays</subject><subject>Digital computers</subject><subject>Discrete Fourier transforms</subject><subject>Fast Fourier transformations</subject><subject>Field programmable gate arrays</subject><subject>Fixed point arithmetic</subject><subject>Fourier transforms</subject><subject>Linear transformations</subject><subject>Mapping</subject><subject>Mathematical analysis</subject><subject>Millimeter waves</subject><subject>multibeams</subject><subject>Multiplication</subject><subject>Obstructions</subject><subject>Phased arrays</subject><subject>Power consumption</subject><subject>Radio frequency</subject><subject>Subsystems</subject><subject>Wireless communication</subject><issn>0018-926X</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAUhoMoOKf3gjcBr1vzcZIm3tWpmzJwsInehTRNpWOzM-kY89fb0eHV4eU87znwIHRNSUop0XeLfJYyQnXKNFcZgRM0oEKohDFGT9GAEKoSzeTnObqIcdlFUAAD9LpodjaUEVs8bXbJ_MPOMCUMkgdv1_ix_qpbu8J5CHZ_j3PMWb-Yb4u4j61fY9tikSo8nvxeorPKrqK_Os4hen9-WowmyfRt_DLKp4njnLeJok445rwFqbOyVK4CbS0RspAcGCe0gkoKrkFYlkkoNQcnofCOVZIXleNDdNvf3YTmZ-tja5bNNnx3Lw3jglABGaEdRXrKhSbG4CuzCfXahr2hxByMmc6YORgzR2Nd5aav1N77f1wpJgGA_wEs-GJk</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Madanayake, Arjuna</creator><creator>Mandal, Soumyajit</creator><creator>Rappaport, Theodore S.</creator><creator>Ariyarathna, Viduneth</creator><creator>Madishetty, Suresh</creator><creator>Pulipati, Sravan</creator><creator>Cintra, Renato J.</creator><creator>Coelho, Diego</creator><creator>Oliviera, Raiza</creator><creator>Bayer, Fabio M.</creator><creator>Belostotski, Leonid</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4513-9607</orcidid><orcidid>https://orcid.org/0000-0002-5228-6907</orcidid><orcidid>https://orcid.org/0000-0001-7449-9957</orcidid><orcidid>https://orcid.org/0000-0001-8128-4647</orcidid><orcidid>https://orcid.org/0000-0003-2240-1924</orcidid><orcidid>https://orcid.org/0000-0003-3289-9308</orcidid><orcidid>https://orcid.org/0000-0002-4579-6757</orcidid><orcidid>https://orcid.org/0000-0001-9070-2337</orcidid><orcidid>https://orcid.org/0000-0002-1464-0805</orcidid></search><sort><creationdate>20200201</creationdate><title>Towards a Low-SWaP 1024-Beam Digital Array: A 32-Beam Subsystem at 5.8 GHz</title><author>Madanayake, Arjuna ; Mandal, Soumyajit ; Rappaport, Theodore S. ; Ariyarathna, Viduneth ; Madishetty, Suresh ; Pulipati, Sravan ; Cintra, Renato J. ; Coelho, Diego ; Oliviera, Raiza ; Bayer, Fabio M. ; Belostotski, Leonid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-81c5c2cea4697dd8cf49aa056b6342301f4f653945a2764d934c64bec2f63bfc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>5G mobile communication</topic><topic>Algorithms</topic><topic>Analog circuits</topic><topic>Antenna arrays</topic><topic>Apertures</topic><topic>Approximate beamforming</topic><topic>Approximation</topic><topic>Array signal processing</topic><topic>Bandwidths</topic><topic>Beamforming</topic><topic>Beams (radiation)</topic><topic>Complexity</topic><topic>Computer architecture</topic><topic>digital arrays</topic><topic>Digital computers</topic><topic>Discrete Fourier transforms</topic><topic>Fast Fourier transformations</topic><topic>Field programmable gate arrays</topic><topic>Fixed point arithmetic</topic><topic>Fourier transforms</topic><topic>Linear transformations</topic><topic>Mapping</topic><topic>Mathematical analysis</topic><topic>Millimeter waves</topic><topic>multibeams</topic><topic>Multiplication</topic><topic>Obstructions</topic><topic>Phased arrays</topic><topic>Power consumption</topic><topic>Radio frequency</topic><topic>Subsystems</topic><topic>Wireless communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Madanayake, Arjuna</creatorcontrib><creatorcontrib>Mandal, Soumyajit</creatorcontrib><creatorcontrib>Rappaport, Theodore S.</creatorcontrib><creatorcontrib>Ariyarathna, Viduneth</creatorcontrib><creatorcontrib>Madishetty, Suresh</creatorcontrib><creatorcontrib>Pulipati, Sravan</creatorcontrib><creatorcontrib>Cintra, Renato J.</creatorcontrib><creatorcontrib>Coelho, Diego</creatorcontrib><creatorcontrib>Oliviera, Raiza</creatorcontrib><creatorcontrib>Bayer, Fabio M.</creatorcontrib><creatorcontrib>Belostotski, Leonid</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Madanayake, Arjuna</au><au>Mandal, Soumyajit</au><au>Rappaport, Theodore S.</au><au>Ariyarathna, Viduneth</au><au>Madishetty, Suresh</au><au>Pulipati, Sravan</au><au>Cintra, Renato J.</au><au>Coelho, Diego</au><au>Oliviera, Raiza</au><au>Bayer, Fabio M.</au><au>Belostotski, Leonid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards a Low-SWaP 1024-Beam Digital Array: A 32-Beam Subsystem at 5.8 GHz</atitle><jtitle>IEEE transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>2020-02-01</date><risdate>2020</risdate><volume>68</volume><issue>2</issue><spage>900</spage><epage>912</epage><pages>900-912</pages><issn>0018-926X</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract>Millimeter-wave communications require multibeam beamforming to utilize wireless channels that suffer from obstructions, path loss, and multipath effects. Digital multibeam beamforming has maximum degrees of freedom compared to analog-phased arrays. However, circuit complexity and power consumption are important constraints for digital multibeam systems. A low-complexity digital computing architecture is proposed for a multiplication-free 32-point linear transform that approximates multiple simultaneous radio frequency (RF) beams similar to a discrete Fourier transform (DFT). Arithmetic complexity due to multiplication is reduced from the fast Fourier transform (FFT) complexity of O(N log N) for DFT realizations, down to zero, thus yielding a 46% and 55% reduction in chip area and dynamic power consumption, respectively, for the N = 32 case considered. This article describes the proposed 32-point DFT approximation targeting 1024 beams using a 2-D array and shows the multiplierless approximation and its mapping to a 32-beam subsystem consisting of 5.8 GHz antennas that can be used for generating 1024 digital beams without multiplications. Real-time beam computation is achieved using a Xilinx field-programmable gate array (FPGA) at 120 MHz bandwidth per beam. Theoretical beam performance is compared with measured RF patterns from both a fixed-point FFT and the proposed multiplier-free algorithm and is in good agreement.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAP.2019.2938704</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-4513-9607</orcidid><orcidid>https://orcid.org/0000-0002-5228-6907</orcidid><orcidid>https://orcid.org/0000-0001-7449-9957</orcidid><orcidid>https://orcid.org/0000-0001-8128-4647</orcidid><orcidid>https://orcid.org/0000-0003-2240-1924</orcidid><orcidid>https://orcid.org/0000-0003-3289-9308</orcidid><orcidid>https://orcid.org/0000-0002-4579-6757</orcidid><orcidid>https://orcid.org/0000-0001-9070-2337</orcidid><orcidid>https://orcid.org/0000-0002-1464-0805</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-926X
ispartof IEEE transactions on antennas and propagation, 2020-02, Vol.68 (2), p.900-912
issn 0018-926X
1558-2221
language eng
recordid cdi_proquest_journals_2350154701
source IEEE Electronic Library (IEL)
subjects 5G mobile communication
Algorithms
Analog circuits
Antenna arrays
Apertures
Approximate beamforming
Approximation
Array signal processing
Bandwidths
Beamforming
Beams (radiation)
Complexity
Computer architecture
digital arrays
Digital computers
Discrete Fourier transforms
Fast Fourier transformations
Field programmable gate arrays
Fixed point arithmetic
Fourier transforms
Linear transformations
Mapping
Mathematical analysis
Millimeter waves
multibeams
Multiplication
Obstructions
Phased arrays
Power consumption
Radio frequency
Subsystems
Wireless communication
title Towards a Low-SWaP 1024-Beam Digital Array: A 32-Beam Subsystem at 5.8 GHz
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T22%3A22%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20a%20Low-SWaP%201024-Beam%20Digital%20Array:%20A%2032-Beam%20Subsystem%20at%205.8%20GHz&rft.jtitle=IEEE%20transactions%20on%20antennas%20and%20propagation&rft.au=Madanayake,%20Arjuna&rft.date=2020-02-01&rft.volume=68&rft.issue=2&rft.spage=900&rft.epage=912&rft.pages=900-912&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/TAP.2019.2938704&rft_dat=%3Cproquest_RIE%3E2350154701%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2350154701&rft_id=info:pmid/&rft_ieee_id=8826444&rfr_iscdi=true