Hierarchically Ordered Porous Carbon with Atomically Dispersed FeN4 for Ultraefficient Oxygen Reduction Reaction in Proton‐Exchange Membrane Fuel Cells
The low catalytic activity and poor mass transport capacity of platinum group metal free (PGM‐free) catalysts seriously restrict the application of proton‐exchange membrane fuel cells (PEMFCs). Catalysts derived from Fe‐doped ZIF‐8 could in theory be as active as Pt/C thanks to the high intrinsic ac...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2020-02, Vol.59 (7), p.2688-2694 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2694 |
---|---|
container_issue | 7 |
container_start_page | 2688 |
container_title | Angewandte Chemie International Edition |
container_volume | 59 |
creator | Qiao, Mengfei Wang, Ying Wang, Quan Hu, Guangzhi Mamat, Xamxikamar Zhang, Shusheng Wang, Shuangyin |
description | The low catalytic activity and poor mass transport capacity of platinum group metal free (PGM‐free) catalysts seriously restrict the application of proton‐exchange membrane fuel cells (PEMFCs). Catalysts derived from Fe‐doped ZIF‐8 could in theory be as active as Pt/C thanks to the high intrinsic activity of FeN4; however, the micropores fail to meet rapid mass transfer. Herein, an ordered hierarchical porous structure is introduced into Fe‐doped ZIF‐8 single crystals, which were subsequently carbonized to obtain an FeN4‐doped hierarchical ordered porous carbon (FeN4/HOPC) skeleton. The optimal catalyst FeN4/HOPC‐c‐1000 shows excellent performance with a half‐wave potential of 0.80 V in 0.5 m H2SO4 solution, only 20 mV lower than that of commercial Pt/C (0.82 V). In a real PEMFC, FeN4/HOPC‐c‐1000 exhibits significantly enhanced current density and power density relative to FeN4/C, which does not have an optimized pore structure, implying an efficient utilization of the active sites and enhanced mass transfer to promote the oxygen reduction reaction (ORR).
Smart doping: When Fe‐doped ZIF‐8 single crystals were pyrolyzed, catalytically active FeN4 centers were atomically dispersed in a 3D hierarchical ordered porous carbon matrix. The interconnected carbon skeleton sufficiently meets the mass transfer requirement, thus boosting the catalytic efficiency for the oxygen reduction reaction (ORR). |
doi_str_mv | 10.1002/anie.201914123 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2350052737</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2350052737</sourcerecordid><originalsourceid>FETCH-LOGICAL-g3033-6d85e0f39d6b0492cba088fa62c335ebfe4c976ff90ab274c7f7490b5319c9903</originalsourceid><addsrcrecordid>eNo9kM1OwkAURhujiYhuXU_iGp2fttNZEgQhQSBG1s10egeGlBmctoHufAS3vp5PYgmE1f1ucvLd3BMEjwQ_E4zpi7QGnikmgoSEsqugQyJKeoxzdt3mkLEeTyJyG9yV5ablkwTHneB3bMBLr9ZGyaJo0Nzn4CFHC-ddXaKB9JmzaG-qNepXbnumXk25A1-23AhmIdLOo2VReQlaG2XAVmh-aFZg0QfktaqMOyZ5CsaihXeVs3_fP8ODWku7AvQO28xLC2hUQ4EGUBTlfXCjZVHCw3l2g-Vo-DkY96bzt8mgP-2tGG5_ivMkAqyZyOMMh4KqTOIk0TKmirEIMg2hEjzWWmCZUR4qrnkocBYxIpQQmHWDp1PvzruvGsoq3bja2_ZkSlmEcUQ54y0lTtTeFNCkO2-20jcpwenRfXp0n17cp_3ZZHjZ2D_0mn3C</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2350052737</pqid></control><display><type>article</type><title>Hierarchically Ordered Porous Carbon with Atomically Dispersed FeN4 for Ultraefficient Oxygen Reduction Reaction in Proton‐Exchange Membrane Fuel Cells</title><source>Access via Wiley Online Library</source><creator>Qiao, Mengfei ; Wang, Ying ; Wang, Quan ; Hu, Guangzhi ; Mamat, Xamxikamar ; Zhang, Shusheng ; Wang, Shuangyin</creator><creatorcontrib>Qiao, Mengfei ; Wang, Ying ; Wang, Quan ; Hu, Guangzhi ; Mamat, Xamxikamar ; Zhang, Shusheng ; Wang, Shuangyin</creatorcontrib><description>The low catalytic activity and poor mass transport capacity of platinum group metal free (PGM‐free) catalysts seriously restrict the application of proton‐exchange membrane fuel cells (PEMFCs). Catalysts derived from Fe‐doped ZIF‐8 could in theory be as active as Pt/C thanks to the high intrinsic activity of FeN4; however, the micropores fail to meet rapid mass transfer. Herein, an ordered hierarchical porous structure is introduced into Fe‐doped ZIF‐8 single crystals, which were subsequently carbonized to obtain an FeN4‐doped hierarchical ordered porous carbon (FeN4/HOPC) skeleton. The optimal catalyst FeN4/HOPC‐c‐1000 shows excellent performance with a half‐wave potential of 0.80 V in 0.5 m H2SO4 solution, only 20 mV lower than that of commercial Pt/C (0.82 V). In a real PEMFC, FeN4/HOPC‐c‐1000 exhibits significantly enhanced current density and power density relative to FeN4/C, which does not have an optimized pore structure, implying an efficient utilization of the active sites and enhanced mass transfer to promote the oxygen reduction reaction (ORR).
Smart doping: When Fe‐doped ZIF‐8 single crystals were pyrolyzed, catalytically active FeN4 centers were atomically dispersed in a 3D hierarchical ordered porous carbon matrix. The interconnected carbon skeleton sufficiently meets the mass transfer requirement, thus boosting the catalytic efficiency for the oxygen reduction reaction (ORR).</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.201914123</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Carbon ; Catalysts ; Catalytic activity ; Chemical reduction ; Crystal structure ; Crystals ; Fuel cells ; Fuel technology ; Iron ; Mass transfer ; Mass transport ; mesoporous materials ; Oxygen ; oxygen reduction reaction ; Oxygen reduction reactions ; Platinum ; Porosity ; Proton exchange membrane fuel cells ; Protons ; Single crystals ; Structural hierarchy ; Sulfuric acid ; zeolite analogues</subject><ispartof>Angewandte Chemie International Edition, 2020-02, Vol.59 (7), p.2688-2694</ispartof><rights>2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-7185-9857</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.201914123$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.201914123$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Qiao, Mengfei</creatorcontrib><creatorcontrib>Wang, Ying</creatorcontrib><creatorcontrib>Wang, Quan</creatorcontrib><creatorcontrib>Hu, Guangzhi</creatorcontrib><creatorcontrib>Mamat, Xamxikamar</creatorcontrib><creatorcontrib>Zhang, Shusheng</creatorcontrib><creatorcontrib>Wang, Shuangyin</creatorcontrib><title>Hierarchically Ordered Porous Carbon with Atomically Dispersed FeN4 for Ultraefficient Oxygen Reduction Reaction in Proton‐Exchange Membrane Fuel Cells</title><title>Angewandte Chemie International Edition</title><description>The low catalytic activity and poor mass transport capacity of platinum group metal free (PGM‐free) catalysts seriously restrict the application of proton‐exchange membrane fuel cells (PEMFCs). Catalysts derived from Fe‐doped ZIF‐8 could in theory be as active as Pt/C thanks to the high intrinsic activity of FeN4; however, the micropores fail to meet rapid mass transfer. Herein, an ordered hierarchical porous structure is introduced into Fe‐doped ZIF‐8 single crystals, which were subsequently carbonized to obtain an FeN4‐doped hierarchical ordered porous carbon (FeN4/HOPC) skeleton. The optimal catalyst FeN4/HOPC‐c‐1000 shows excellent performance with a half‐wave potential of 0.80 V in 0.5 m H2SO4 solution, only 20 mV lower than that of commercial Pt/C (0.82 V). In a real PEMFC, FeN4/HOPC‐c‐1000 exhibits significantly enhanced current density and power density relative to FeN4/C, which does not have an optimized pore structure, implying an efficient utilization of the active sites and enhanced mass transfer to promote the oxygen reduction reaction (ORR).
Smart doping: When Fe‐doped ZIF‐8 single crystals were pyrolyzed, catalytically active FeN4 centers were atomically dispersed in a 3D hierarchical ordered porous carbon matrix. The interconnected carbon skeleton sufficiently meets the mass transfer requirement, thus boosting the catalytic efficiency for the oxygen reduction reaction (ORR).</description><subject>Carbon</subject><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>Chemical reduction</subject><subject>Crystal structure</subject><subject>Crystals</subject><subject>Fuel cells</subject><subject>Fuel technology</subject><subject>Iron</subject><subject>Mass transfer</subject><subject>Mass transport</subject><subject>mesoporous materials</subject><subject>Oxygen</subject><subject>oxygen reduction reaction</subject><subject>Oxygen reduction reactions</subject><subject>Platinum</subject><subject>Porosity</subject><subject>Proton exchange membrane fuel cells</subject><subject>Protons</subject><subject>Single crystals</subject><subject>Structural hierarchy</subject><subject>Sulfuric acid</subject><subject>zeolite analogues</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kM1OwkAURhujiYhuXU_iGp2fttNZEgQhQSBG1s10egeGlBmctoHufAS3vp5PYgmE1f1ucvLd3BMEjwQ_E4zpi7QGnikmgoSEsqugQyJKeoxzdt3mkLEeTyJyG9yV5ablkwTHneB3bMBLr9ZGyaJo0Nzn4CFHC-ddXaKB9JmzaG-qNepXbnumXk25A1-23AhmIdLOo2VReQlaG2XAVmh-aFZg0QfktaqMOyZ5CsaihXeVs3_fP8ODWku7AvQO28xLC2hUQ4EGUBTlfXCjZVHCw3l2g-Vo-DkY96bzt8mgP-2tGG5_ivMkAqyZyOMMh4KqTOIk0TKmirEIMg2hEjzWWmCZUR4qrnkocBYxIpQQmHWDp1PvzruvGsoq3bja2_ZkSlmEcUQ54y0lTtTeFNCkO2-20jcpwenRfXp0n17cp_3ZZHjZ2D_0mn3C</recordid><startdate>20200210</startdate><enddate>20200210</enddate><creator>Qiao, Mengfei</creator><creator>Wang, Ying</creator><creator>Wang, Quan</creator><creator>Hu, Guangzhi</creator><creator>Mamat, Xamxikamar</creator><creator>Zhang, Shusheng</creator><creator>Wang, Shuangyin</creator><general>Wiley Subscription Services, Inc</general><scope>7TM</scope><scope>K9.</scope><orcidid>https://orcid.org/0000-0001-7185-9857</orcidid></search><sort><creationdate>20200210</creationdate><title>Hierarchically Ordered Porous Carbon with Atomically Dispersed FeN4 for Ultraefficient Oxygen Reduction Reaction in Proton‐Exchange Membrane Fuel Cells</title><author>Qiao, Mengfei ; Wang, Ying ; Wang, Quan ; Hu, Guangzhi ; Mamat, Xamxikamar ; Zhang, Shusheng ; Wang, Shuangyin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g3033-6d85e0f39d6b0492cba088fa62c335ebfe4c976ff90ab274c7f7490b5319c9903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Carbon</topic><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>Chemical reduction</topic><topic>Crystal structure</topic><topic>Crystals</topic><topic>Fuel cells</topic><topic>Fuel technology</topic><topic>Iron</topic><topic>Mass transfer</topic><topic>Mass transport</topic><topic>mesoporous materials</topic><topic>Oxygen</topic><topic>oxygen reduction reaction</topic><topic>Oxygen reduction reactions</topic><topic>Platinum</topic><topic>Porosity</topic><topic>Proton exchange membrane fuel cells</topic><topic>Protons</topic><topic>Single crystals</topic><topic>Structural hierarchy</topic><topic>Sulfuric acid</topic><topic>zeolite analogues</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qiao, Mengfei</creatorcontrib><creatorcontrib>Wang, Ying</creatorcontrib><creatorcontrib>Wang, Quan</creatorcontrib><creatorcontrib>Hu, Guangzhi</creatorcontrib><creatorcontrib>Mamat, Xamxikamar</creatorcontrib><creatorcontrib>Zhang, Shusheng</creatorcontrib><creatorcontrib>Wang, Shuangyin</creatorcontrib><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qiao, Mengfei</au><au>Wang, Ying</au><au>Wang, Quan</au><au>Hu, Guangzhi</au><au>Mamat, Xamxikamar</au><au>Zhang, Shusheng</au><au>Wang, Shuangyin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hierarchically Ordered Porous Carbon with Atomically Dispersed FeN4 for Ultraefficient Oxygen Reduction Reaction in Proton‐Exchange Membrane Fuel Cells</atitle><jtitle>Angewandte Chemie International Edition</jtitle><date>2020-02-10</date><risdate>2020</risdate><volume>59</volume><issue>7</issue><spage>2688</spage><epage>2694</epage><pages>2688-2694</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>The low catalytic activity and poor mass transport capacity of platinum group metal free (PGM‐free) catalysts seriously restrict the application of proton‐exchange membrane fuel cells (PEMFCs). Catalysts derived from Fe‐doped ZIF‐8 could in theory be as active as Pt/C thanks to the high intrinsic activity of FeN4; however, the micropores fail to meet rapid mass transfer. Herein, an ordered hierarchical porous structure is introduced into Fe‐doped ZIF‐8 single crystals, which were subsequently carbonized to obtain an FeN4‐doped hierarchical ordered porous carbon (FeN4/HOPC) skeleton. The optimal catalyst FeN4/HOPC‐c‐1000 shows excellent performance with a half‐wave potential of 0.80 V in 0.5 m H2SO4 solution, only 20 mV lower than that of commercial Pt/C (0.82 V). In a real PEMFC, FeN4/HOPC‐c‐1000 exhibits significantly enhanced current density and power density relative to FeN4/C, which does not have an optimized pore structure, implying an efficient utilization of the active sites and enhanced mass transfer to promote the oxygen reduction reaction (ORR).
Smart doping: When Fe‐doped ZIF‐8 single crystals were pyrolyzed, catalytically active FeN4 centers were atomically dispersed in a 3D hierarchical ordered porous carbon matrix. The interconnected carbon skeleton sufficiently meets the mass transfer requirement, thus boosting the catalytic efficiency for the oxygen reduction reaction (ORR).</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/anie.201914123</doi><tpages>7</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0001-7185-9857</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie International Edition, 2020-02, Vol.59 (7), p.2688-2694 |
issn | 1433-7851 1521-3773 |
language | eng |
recordid | cdi_proquest_journals_2350052737 |
source | Access via Wiley Online Library |
subjects | Carbon Catalysts Catalytic activity Chemical reduction Crystal structure Crystals Fuel cells Fuel technology Iron Mass transfer Mass transport mesoporous materials Oxygen oxygen reduction reaction Oxygen reduction reactions Platinum Porosity Proton exchange membrane fuel cells Protons Single crystals Structural hierarchy Sulfuric acid zeolite analogues |
title | Hierarchically Ordered Porous Carbon with Atomically Dispersed FeN4 for Ultraefficient Oxygen Reduction Reaction in Proton‐Exchange Membrane Fuel Cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T01%3A53%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hierarchically%20Ordered%20Porous%20Carbon%20with%20Atomically%20Dispersed%20FeN4%20for%20Ultraefficient%20Oxygen%20Reduction%20Reaction%20in%20Proton%E2%80%90Exchange%20Membrane%20Fuel%20Cells&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Qiao,%20Mengfei&rft.date=2020-02-10&rft.volume=59&rft.issue=7&rft.spage=2688&rft.epage=2694&rft.pages=2688-2694&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.201914123&rft_dat=%3Cproquest_wiley%3E2350052737%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2350052737&rft_id=info:pmid/&rfr_iscdi=true |