Hierarchically Ordered Porous Carbon with Atomically Dispersed FeN4 for Ultraefficient Oxygen Reduction Reaction in Proton‐Exchange Membrane Fuel Cells

The low catalytic activity and poor mass transport capacity of platinum group metal free (PGM‐free) catalysts seriously restrict the application of proton‐exchange membrane fuel cells (PEMFCs). Catalysts derived from Fe‐doped ZIF‐8 could in theory be as active as Pt/C thanks to the high intrinsic ac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2020-02, Vol.59 (7), p.2688-2694
Hauptverfasser: Qiao, Mengfei, Wang, Ying, Wang, Quan, Hu, Guangzhi, Mamat, Xamxikamar, Zhang, Shusheng, Wang, Shuangyin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2694
container_issue 7
container_start_page 2688
container_title Angewandte Chemie International Edition
container_volume 59
creator Qiao, Mengfei
Wang, Ying
Wang, Quan
Hu, Guangzhi
Mamat, Xamxikamar
Zhang, Shusheng
Wang, Shuangyin
description The low catalytic activity and poor mass transport capacity of platinum group metal free (PGM‐free) catalysts seriously restrict the application of proton‐exchange membrane fuel cells (PEMFCs). Catalysts derived from Fe‐doped ZIF‐8 could in theory be as active as Pt/C thanks to the high intrinsic activity of FeN4; however, the micropores fail to meet rapid mass transfer. Herein, an ordered hierarchical porous structure is introduced into Fe‐doped ZIF‐8 single crystals, which were subsequently carbonized to obtain an FeN4‐doped hierarchical ordered porous carbon (FeN4/HOPC) skeleton. The optimal catalyst FeN4/HOPC‐c‐1000 shows excellent performance with a half‐wave potential of 0.80 V in 0.5 m H2SO4 solution, only 20 mV lower than that of commercial Pt/C (0.82 V). In a real PEMFC, FeN4/HOPC‐c‐1000 exhibits significantly enhanced current density and power density relative to FeN4/C, which does not have an optimized pore structure, implying an efficient utilization of the active sites and enhanced mass transfer to promote the oxygen reduction reaction (ORR). Smart doping: When Fe‐doped ZIF‐8 single crystals were pyrolyzed, catalytically active FeN4 centers were atomically dispersed in a 3D hierarchical ordered porous carbon matrix. The interconnected carbon skeleton sufficiently meets the mass transfer requirement, thus boosting the catalytic efficiency for the oxygen reduction reaction (ORR).
doi_str_mv 10.1002/anie.201914123
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2350052737</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2350052737</sourcerecordid><originalsourceid>FETCH-LOGICAL-g3033-6d85e0f39d6b0492cba088fa62c335ebfe4c976ff90ab274c7f7490b5319c9903</originalsourceid><addsrcrecordid>eNo9kM1OwkAURhujiYhuXU_iGp2fttNZEgQhQSBG1s10egeGlBmctoHufAS3vp5PYgmE1f1ucvLd3BMEjwQ_E4zpi7QGnikmgoSEsqugQyJKeoxzdt3mkLEeTyJyG9yV5ablkwTHneB3bMBLr9ZGyaJo0Nzn4CFHC-ddXaKB9JmzaG-qNepXbnumXk25A1-23AhmIdLOo2VReQlaG2XAVmh-aFZg0QfktaqMOyZ5CsaihXeVs3_fP8ODWku7AvQO28xLC2hUQ4EGUBTlfXCjZVHCw3l2g-Vo-DkY96bzt8mgP-2tGG5_ivMkAqyZyOMMh4KqTOIk0TKmirEIMg2hEjzWWmCZUR4qrnkocBYxIpQQmHWDp1PvzruvGsoq3bja2_ZkSlmEcUQ54y0lTtTeFNCkO2-20jcpwenRfXp0n17cp_3ZZHjZ2D_0mn3C</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2350052737</pqid></control><display><type>article</type><title>Hierarchically Ordered Porous Carbon with Atomically Dispersed FeN4 for Ultraefficient Oxygen Reduction Reaction in Proton‐Exchange Membrane Fuel Cells</title><source>Access via Wiley Online Library</source><creator>Qiao, Mengfei ; Wang, Ying ; Wang, Quan ; Hu, Guangzhi ; Mamat, Xamxikamar ; Zhang, Shusheng ; Wang, Shuangyin</creator><creatorcontrib>Qiao, Mengfei ; Wang, Ying ; Wang, Quan ; Hu, Guangzhi ; Mamat, Xamxikamar ; Zhang, Shusheng ; Wang, Shuangyin</creatorcontrib><description>The low catalytic activity and poor mass transport capacity of platinum group metal free (PGM‐free) catalysts seriously restrict the application of proton‐exchange membrane fuel cells (PEMFCs). Catalysts derived from Fe‐doped ZIF‐8 could in theory be as active as Pt/C thanks to the high intrinsic activity of FeN4; however, the micropores fail to meet rapid mass transfer. Herein, an ordered hierarchical porous structure is introduced into Fe‐doped ZIF‐8 single crystals, which were subsequently carbonized to obtain an FeN4‐doped hierarchical ordered porous carbon (FeN4/HOPC) skeleton. The optimal catalyst FeN4/HOPC‐c‐1000 shows excellent performance with a half‐wave potential of 0.80 V in 0.5 m H2SO4 solution, only 20 mV lower than that of commercial Pt/C (0.82 V). In a real PEMFC, FeN4/HOPC‐c‐1000 exhibits significantly enhanced current density and power density relative to FeN4/C, which does not have an optimized pore structure, implying an efficient utilization of the active sites and enhanced mass transfer to promote the oxygen reduction reaction (ORR). Smart doping: When Fe‐doped ZIF‐8 single crystals were pyrolyzed, catalytically active FeN4 centers were atomically dispersed in a 3D hierarchical ordered porous carbon matrix. The interconnected carbon skeleton sufficiently meets the mass transfer requirement, thus boosting the catalytic efficiency for the oxygen reduction reaction (ORR).</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.201914123</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Carbon ; Catalysts ; Catalytic activity ; Chemical reduction ; Crystal structure ; Crystals ; Fuel cells ; Fuel technology ; Iron ; Mass transfer ; Mass transport ; mesoporous materials ; Oxygen ; oxygen reduction reaction ; Oxygen reduction reactions ; Platinum ; Porosity ; Proton exchange membrane fuel cells ; Protons ; Single crystals ; Structural hierarchy ; Sulfuric acid ; zeolite analogues</subject><ispartof>Angewandte Chemie International Edition, 2020-02, Vol.59 (7), p.2688-2694</ispartof><rights>2019 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2020 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-7185-9857</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.201914123$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.201914123$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Qiao, Mengfei</creatorcontrib><creatorcontrib>Wang, Ying</creatorcontrib><creatorcontrib>Wang, Quan</creatorcontrib><creatorcontrib>Hu, Guangzhi</creatorcontrib><creatorcontrib>Mamat, Xamxikamar</creatorcontrib><creatorcontrib>Zhang, Shusheng</creatorcontrib><creatorcontrib>Wang, Shuangyin</creatorcontrib><title>Hierarchically Ordered Porous Carbon with Atomically Dispersed FeN4 for Ultraefficient Oxygen Reduction Reaction in Proton‐Exchange Membrane Fuel Cells</title><title>Angewandte Chemie International Edition</title><description>The low catalytic activity and poor mass transport capacity of platinum group metal free (PGM‐free) catalysts seriously restrict the application of proton‐exchange membrane fuel cells (PEMFCs). Catalysts derived from Fe‐doped ZIF‐8 could in theory be as active as Pt/C thanks to the high intrinsic activity of FeN4; however, the micropores fail to meet rapid mass transfer. Herein, an ordered hierarchical porous structure is introduced into Fe‐doped ZIF‐8 single crystals, which were subsequently carbonized to obtain an FeN4‐doped hierarchical ordered porous carbon (FeN4/HOPC) skeleton. The optimal catalyst FeN4/HOPC‐c‐1000 shows excellent performance with a half‐wave potential of 0.80 V in 0.5 m H2SO4 solution, only 20 mV lower than that of commercial Pt/C (0.82 V). In a real PEMFC, FeN4/HOPC‐c‐1000 exhibits significantly enhanced current density and power density relative to FeN4/C, which does not have an optimized pore structure, implying an efficient utilization of the active sites and enhanced mass transfer to promote the oxygen reduction reaction (ORR). Smart doping: When Fe‐doped ZIF‐8 single crystals were pyrolyzed, catalytically active FeN4 centers were atomically dispersed in a 3D hierarchical ordered porous carbon matrix. The interconnected carbon skeleton sufficiently meets the mass transfer requirement, thus boosting the catalytic efficiency for the oxygen reduction reaction (ORR).</description><subject>Carbon</subject><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>Chemical reduction</subject><subject>Crystal structure</subject><subject>Crystals</subject><subject>Fuel cells</subject><subject>Fuel technology</subject><subject>Iron</subject><subject>Mass transfer</subject><subject>Mass transport</subject><subject>mesoporous materials</subject><subject>Oxygen</subject><subject>oxygen reduction reaction</subject><subject>Oxygen reduction reactions</subject><subject>Platinum</subject><subject>Porosity</subject><subject>Proton exchange membrane fuel cells</subject><subject>Protons</subject><subject>Single crystals</subject><subject>Structural hierarchy</subject><subject>Sulfuric acid</subject><subject>zeolite analogues</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kM1OwkAURhujiYhuXU_iGp2fttNZEgQhQSBG1s10egeGlBmctoHufAS3vp5PYgmE1f1ucvLd3BMEjwQ_E4zpi7QGnikmgoSEsqugQyJKeoxzdt3mkLEeTyJyG9yV5ablkwTHneB3bMBLr9ZGyaJo0Nzn4CFHC-ddXaKB9JmzaG-qNepXbnumXk25A1-23AhmIdLOo2VReQlaG2XAVmh-aFZg0QfktaqMOyZ5CsaihXeVs3_fP8ODWku7AvQO28xLC2hUQ4EGUBTlfXCjZVHCw3l2g-Vo-DkY96bzt8mgP-2tGG5_ivMkAqyZyOMMh4KqTOIk0TKmirEIMg2hEjzWWmCZUR4qrnkocBYxIpQQmHWDp1PvzruvGsoq3bja2_ZkSlmEcUQ54y0lTtTeFNCkO2-20jcpwenRfXp0n17cp_3ZZHjZ2D_0mn3C</recordid><startdate>20200210</startdate><enddate>20200210</enddate><creator>Qiao, Mengfei</creator><creator>Wang, Ying</creator><creator>Wang, Quan</creator><creator>Hu, Guangzhi</creator><creator>Mamat, Xamxikamar</creator><creator>Zhang, Shusheng</creator><creator>Wang, Shuangyin</creator><general>Wiley Subscription Services, Inc</general><scope>7TM</scope><scope>K9.</scope><orcidid>https://orcid.org/0000-0001-7185-9857</orcidid></search><sort><creationdate>20200210</creationdate><title>Hierarchically Ordered Porous Carbon with Atomically Dispersed FeN4 for Ultraefficient Oxygen Reduction Reaction in Proton‐Exchange Membrane Fuel Cells</title><author>Qiao, Mengfei ; Wang, Ying ; Wang, Quan ; Hu, Guangzhi ; Mamat, Xamxikamar ; Zhang, Shusheng ; Wang, Shuangyin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g3033-6d85e0f39d6b0492cba088fa62c335ebfe4c976ff90ab274c7f7490b5319c9903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Carbon</topic><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>Chemical reduction</topic><topic>Crystal structure</topic><topic>Crystals</topic><topic>Fuel cells</topic><topic>Fuel technology</topic><topic>Iron</topic><topic>Mass transfer</topic><topic>Mass transport</topic><topic>mesoporous materials</topic><topic>Oxygen</topic><topic>oxygen reduction reaction</topic><topic>Oxygen reduction reactions</topic><topic>Platinum</topic><topic>Porosity</topic><topic>Proton exchange membrane fuel cells</topic><topic>Protons</topic><topic>Single crystals</topic><topic>Structural hierarchy</topic><topic>Sulfuric acid</topic><topic>zeolite analogues</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qiao, Mengfei</creatorcontrib><creatorcontrib>Wang, Ying</creatorcontrib><creatorcontrib>Wang, Quan</creatorcontrib><creatorcontrib>Hu, Guangzhi</creatorcontrib><creatorcontrib>Mamat, Xamxikamar</creatorcontrib><creatorcontrib>Zhang, Shusheng</creatorcontrib><creatorcontrib>Wang, Shuangyin</creatorcontrib><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qiao, Mengfei</au><au>Wang, Ying</au><au>Wang, Quan</au><au>Hu, Guangzhi</au><au>Mamat, Xamxikamar</au><au>Zhang, Shusheng</au><au>Wang, Shuangyin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hierarchically Ordered Porous Carbon with Atomically Dispersed FeN4 for Ultraefficient Oxygen Reduction Reaction in Proton‐Exchange Membrane Fuel Cells</atitle><jtitle>Angewandte Chemie International Edition</jtitle><date>2020-02-10</date><risdate>2020</risdate><volume>59</volume><issue>7</issue><spage>2688</spage><epage>2694</epage><pages>2688-2694</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>The low catalytic activity and poor mass transport capacity of platinum group metal free (PGM‐free) catalysts seriously restrict the application of proton‐exchange membrane fuel cells (PEMFCs). Catalysts derived from Fe‐doped ZIF‐8 could in theory be as active as Pt/C thanks to the high intrinsic activity of FeN4; however, the micropores fail to meet rapid mass transfer. Herein, an ordered hierarchical porous structure is introduced into Fe‐doped ZIF‐8 single crystals, which were subsequently carbonized to obtain an FeN4‐doped hierarchical ordered porous carbon (FeN4/HOPC) skeleton. The optimal catalyst FeN4/HOPC‐c‐1000 shows excellent performance with a half‐wave potential of 0.80 V in 0.5 m H2SO4 solution, only 20 mV lower than that of commercial Pt/C (0.82 V). In a real PEMFC, FeN4/HOPC‐c‐1000 exhibits significantly enhanced current density and power density relative to FeN4/C, which does not have an optimized pore structure, implying an efficient utilization of the active sites and enhanced mass transfer to promote the oxygen reduction reaction (ORR). Smart doping: When Fe‐doped ZIF‐8 single crystals were pyrolyzed, catalytically active FeN4 centers were atomically dispersed in a 3D hierarchical ordered porous carbon matrix. The interconnected carbon skeleton sufficiently meets the mass transfer requirement, thus boosting the catalytic efficiency for the oxygen reduction reaction (ORR).</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/anie.201914123</doi><tpages>7</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0001-7185-9857</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2020-02, Vol.59 (7), p.2688-2694
issn 1433-7851
1521-3773
language eng
recordid cdi_proquest_journals_2350052737
source Access via Wiley Online Library
subjects Carbon
Catalysts
Catalytic activity
Chemical reduction
Crystal structure
Crystals
Fuel cells
Fuel technology
Iron
Mass transfer
Mass transport
mesoporous materials
Oxygen
oxygen reduction reaction
Oxygen reduction reactions
Platinum
Porosity
Proton exchange membrane fuel cells
Protons
Single crystals
Structural hierarchy
Sulfuric acid
zeolite analogues
title Hierarchically Ordered Porous Carbon with Atomically Dispersed FeN4 for Ultraefficient Oxygen Reduction Reaction in Proton‐Exchange Membrane Fuel Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T01%3A53%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hierarchically%20Ordered%20Porous%20Carbon%20with%20Atomically%20Dispersed%20FeN4%20for%20Ultraefficient%20Oxygen%20Reduction%20Reaction%20in%20Proton%E2%80%90Exchange%20Membrane%20Fuel%20Cells&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Qiao,%20Mengfei&rft.date=2020-02-10&rft.volume=59&rft.issue=7&rft.spage=2688&rft.epage=2694&rft.pages=2688-2694&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.201914123&rft_dat=%3Cproquest_wiley%3E2350052737%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2350052737&rft_id=info:pmid/&rfr_iscdi=true