Orientations of graphs avoiding given lists on out‐degrees
Let G be a graph and F : V ( G ) → 2 N be a mapping. The graph G is said to be F‐ avoiding if there exists an orientation O of G such that d O + ( v ) ∉ F ( v ) for every v ∈ V ( G ), where d O + ( v ) denotes the out‐degree of v in the directed graph G with respect to O. In this paper it is shown t...
Gespeichert in:
Veröffentlicht in: | Journal of graph theory 2020-04, Vol.93 (4), p.483-502 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
G be a graph and
F
:
V
(
G
)
→
2
N be a mapping. The graph
G is said to be
F‐
avoiding if there exists an orientation
O of
G such that
d
O
+
(
v
)
∉
F
(
v
) for every
v
∈
V
(
G
), where
d
O
+
(
v
) denotes the out‐degree of
v in the directed graph
G with respect to
O. In this paper it is shown that if
G is bipartite and
∣
F
(
v
)
∣
≤
d
G
(
v
)
/
2 for every
v
∈
V
(
G
), then
G is
F‐avoiding. The bound
∣
F
(
v
)
∣
≤
d
G
(
v
)
/
2 is best possible. For every graph
G, we conjecture that if
∣
F
(
v
)
∣
≤
1
2
(
d
G
(
v
)
−
1
) for every
v
∈
V
(
G
), then
G is
F‐avoiding. We also argue about this conjecture for the best possibility of the conditions and also show some partial solutions. |
---|---|
ISSN: | 0364-9024 1097-0118 |
DOI: | 10.1002/jgt.22498 |