Android Malware Detection Using Fine-Grained Features

Nowadays, Android applications declare as many permissions as possible to provide more function for the users, which also poses severe security threat to them. Although many Android malware detection methods based on permissions have been developed, they are ineffective when malicious applications d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific programming 2020, Vol.2020 (2020), p.1-13
Hauptverfasser: Huang, Xingli, Guan, Jun, Mao, Baolei, Jiang, Xu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13
container_issue 2020
container_start_page 1
container_title Scientific programming
container_volume 2020
creator Huang, Xingli
Guan, Jun
Mao, Baolei
Jiang, Xu
description Nowadays, Android applications declare as many permissions as possible to provide more function for the users, which also poses severe security threat to them. Although many Android malware detection methods based on permissions have been developed, they are ineffective when malicious applications declare few dangerous permissions or when the dangerous permissions declared by malicious applications are similar with those declared by benign applications. This limitation is attributed to the use of too few information for classification. We propose a new method named fine-grained dangerous permission (FDP) method for detecting Android malicious applications, which gathers features that better represent the difference between malicious applications and benign applications. Among these features, the fine-grained feature of dangerous permissions applied in components is proposed for the first time. We evaluate 1700 benign applications and 1600 malicious applications and demonstrate that FDP achieves a TP rate of 94.5%. Furthermore, compared with other related detection approaches, FDP can detect more malware families and only requires 15.205 s to analyze one application on average, which demonstrates its applicability for practical implementation.
doi_str_mv 10.1155/2020/5190138
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2350017307</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2350017307</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-795506befc48037aa8f2274de63dd6388c12c781f520d66913e4153023261faa3</originalsourceid><addsrcrecordid>eNqF0MFLwzAUBvAgCs7pzbMUPGrde0mTJscx3RQmXhx4C7FJNWO2M2kZ_vdmdODR0_cOP97jfYRcItwhcj6hQGHCUQEyeURGKEueK1Rvx2kGLnNFi-KUnMW4BkCJACPCp40NrbfZs9nsTHDZvetc1fm2yVbRNx_Z3DcuXwSTwmZzZ7o-uHhOTmqzie7ikGOymj-8zh7z5cviaTZd5lVBRZeXinMQ766uCgmsNEbWlJaFdYJZK5iUFdKqlFhzClYIhcwVyBlQRgXWxrAxuR72bkP73bvY6XXbhyad1JTx9ETJoEzqdlBVaGMMrtbb4L9M-NEIel-M3hejD8UkfjPwT99Ys_P_6atBu2Rcbf40BQVMsV-6qGli</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2350017307</pqid></control><display><type>article</type><title>Android Malware Detection Using Fine-Grained Features</title><source>Wiley Online Library Open Access</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Huang, Xingli ; Guan, Jun ; Mao, Baolei ; Jiang, Xu</creator><contributor>Wu, Zhiang</contributor><creatorcontrib>Huang, Xingli ; Guan, Jun ; Mao, Baolei ; Jiang, Xu ; Wu, Zhiang</creatorcontrib><description>Nowadays, Android applications declare as many permissions as possible to provide more function for the users, which also poses severe security threat to them. Although many Android malware detection methods based on permissions have been developed, they are ineffective when malicious applications declare few dangerous permissions or when the dangerous permissions declared by malicious applications are similar with those declared by benign applications. This limitation is attributed to the use of too few information for classification. We propose a new method named fine-grained dangerous permission (FDP) method for detecting Android malicious applications, which gathers features that better represent the difference between malicious applications and benign applications. Among these features, the fine-grained feature of dangerous permissions applied in components is proposed for the first time. We evaluate 1700 benign applications and 1600 malicious applications and demonstrate that FDP achieves a TP rate of 94.5%. Furthermore, compared with other related detection approaches, FDP can detect more malware families and only requires 15.205 s to analyze one application on average, which demonstrates its applicability for practical implementation.</description><identifier>ISSN: 1058-9244</identifier><identifier>EISSN: 1875-919X</identifier><identifier>DOI: 10.1155/2020/5190138</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Calendars ; Experiments ; Machine learning ; Malware ; Methods</subject><ispartof>Scientific programming, 2020, Vol.2020 (2020), p.1-13</ispartof><rights>Copyright © 2020 Xu Jiang et al.</rights><rights>Copyright © 2020 Xu Jiang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-795506befc48037aa8f2274de63dd6388c12c781f520d66913e4153023261faa3</citedby><cites>FETCH-LOGICAL-c426t-795506befc48037aa8f2274de63dd6388c12c781f520d66913e4153023261faa3</cites><orcidid>0000-0001-5840-5682 ; 0000-0002-4542-3037</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><contributor>Wu, Zhiang</contributor><creatorcontrib>Huang, Xingli</creatorcontrib><creatorcontrib>Guan, Jun</creatorcontrib><creatorcontrib>Mao, Baolei</creatorcontrib><creatorcontrib>Jiang, Xu</creatorcontrib><title>Android Malware Detection Using Fine-Grained Features</title><title>Scientific programming</title><description>Nowadays, Android applications declare as many permissions as possible to provide more function for the users, which also poses severe security threat to them. Although many Android malware detection methods based on permissions have been developed, they are ineffective when malicious applications declare few dangerous permissions or when the dangerous permissions declared by malicious applications are similar with those declared by benign applications. This limitation is attributed to the use of too few information for classification. We propose a new method named fine-grained dangerous permission (FDP) method for detecting Android malicious applications, which gathers features that better represent the difference between malicious applications and benign applications. Among these features, the fine-grained feature of dangerous permissions applied in components is proposed for the first time. We evaluate 1700 benign applications and 1600 malicious applications and demonstrate that FDP achieves a TP rate of 94.5%. Furthermore, compared with other related detection approaches, FDP can detect more malware families and only requires 15.205 s to analyze one application on average, which demonstrates its applicability for practical implementation.</description><subject>Calendars</subject><subject>Experiments</subject><subject>Machine learning</subject><subject>Malware</subject><subject>Methods</subject><issn>1058-9244</issn><issn>1875-919X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><recordid>eNqF0MFLwzAUBvAgCs7pzbMUPGrde0mTJscx3RQmXhx4C7FJNWO2M2kZ_vdmdODR0_cOP97jfYRcItwhcj6hQGHCUQEyeURGKEueK1Rvx2kGLnNFi-KUnMW4BkCJACPCp40NrbfZs9nsTHDZvetc1fm2yVbRNx_Z3DcuXwSTwmZzZ7o-uHhOTmqzie7ikGOymj-8zh7z5cviaTZd5lVBRZeXinMQ766uCgmsNEbWlJaFdYJZK5iUFdKqlFhzClYIhcwVyBlQRgXWxrAxuR72bkP73bvY6XXbhyad1JTx9ETJoEzqdlBVaGMMrtbb4L9M-NEIel-M3hejD8UkfjPwT99Ys_P_6atBu2Rcbf40BQVMsV-6qGli</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Huang, Xingli</creator><creator>Guan, Jun</creator><creator>Mao, Baolei</creator><creator>Jiang, Xu</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5840-5682</orcidid><orcidid>https://orcid.org/0000-0002-4542-3037</orcidid></search><sort><creationdate>2020</creationdate><title>Android Malware Detection Using Fine-Grained Features</title><author>Huang, Xingli ; Guan, Jun ; Mao, Baolei ; Jiang, Xu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-795506befc48037aa8f2274de63dd6388c12c781f520d66913e4153023261faa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Calendars</topic><topic>Experiments</topic><topic>Machine learning</topic><topic>Malware</topic><topic>Methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Xingli</creatorcontrib><creatorcontrib>Guan, Jun</creatorcontrib><creatorcontrib>Mao, Baolei</creatorcontrib><creatorcontrib>Jiang, Xu</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Scientific programming</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Xingli</au><au>Guan, Jun</au><au>Mao, Baolei</au><au>Jiang, Xu</au><au>Wu, Zhiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Android Malware Detection Using Fine-Grained Features</atitle><jtitle>Scientific programming</jtitle><date>2020</date><risdate>2020</risdate><volume>2020</volume><issue>2020</issue><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>1058-9244</issn><eissn>1875-919X</eissn><abstract>Nowadays, Android applications declare as many permissions as possible to provide more function for the users, which also poses severe security threat to them. Although many Android malware detection methods based on permissions have been developed, they are ineffective when malicious applications declare few dangerous permissions or when the dangerous permissions declared by malicious applications are similar with those declared by benign applications. This limitation is attributed to the use of too few information for classification. We propose a new method named fine-grained dangerous permission (FDP) method for detecting Android malicious applications, which gathers features that better represent the difference between malicious applications and benign applications. Among these features, the fine-grained feature of dangerous permissions applied in components is proposed for the first time. We evaluate 1700 benign applications and 1600 malicious applications and demonstrate that FDP achieves a TP rate of 94.5%. Furthermore, compared with other related detection approaches, FDP can detect more malware families and only requires 15.205 s to analyze one application on average, which demonstrates its applicability for practical implementation.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2020/5190138</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-5840-5682</orcidid><orcidid>https://orcid.org/0000-0002-4542-3037</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1058-9244
ispartof Scientific programming, 2020, Vol.2020 (2020), p.1-13
issn 1058-9244
1875-919X
language eng
recordid cdi_proquest_journals_2350017307
source Wiley Online Library Open Access; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Calendars
Experiments
Machine learning
Malware
Methods
title Android Malware Detection Using Fine-Grained Features
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T12%3A46%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Android%20Malware%20Detection%20Using%20Fine-Grained%20Features&rft.jtitle=Scientific%20programming&rft.au=Huang,%20Xingli&rft.date=2020&rft.volume=2020&rft.issue=2020&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=1058-9244&rft.eissn=1875-919X&rft_id=info:doi/10.1155/2020/5190138&rft_dat=%3Cproquest_cross%3E2350017307%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2350017307&rft_id=info:pmid/&rfr_iscdi=true