Update on sucrose transport in higher plants

Sucrose as the major transported form of fixed carbon, must be translocated from the sites of synthesis, i.e. the green tissues, to the sites of consumption and storage, i.e. the non-green cells and organs. For apoplasmic transport, carrier-mediated processes are required at the plasma membrane. Fun...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental botany 1999-06, Vol.50 (90001), p.935-953
Hauptverfasser: Kuhn, C, Barker, L, Burkle, L, Frommer, W.B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 953
container_issue 90001
container_start_page 935
container_title Journal of experimental botany
container_volume 50
creator Kuhn, C
Barker, L
Burkle, L
Frommer, W.B
description Sucrose as the major transported form of fixed carbon, must be translocated from the sites of synthesis, i.e. the green tissues, to the sites of consumption and storage, i.e. the non-green cells and organs. For apoplasmic transport, carrier-mediated processes are required at the plasma membrane. Functional complementation of modified yeast strains has enabled the isolation and characterization of a large family of sucrose carriers (SUT) from a wide variety of species. In Xenopus oocytes, electrophysiological methods demonstrated that the SUTs function as proton co-transporters. Localization studies show that at least SUT1 is present at the plasma membrane of enucleated sieve elements, indicating macromolecular transport of its mRNA or protein from the companion cell to the sieve element. Inhibition of the transport activity in several transgenic plant species proves that SUT function is essential for long-distance transport. Further experiments will be required to assign specific functions to the other members of the SUT family.
doi_str_mv 10.1093/jexbot/50.suppl_1.935
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_234992606</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23696200</jstor_id><sourcerecordid>23696200</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-9d243cfc5fc92c373e44d0e6e9be88b414e416c1ea4ce9124505f858a08960243</originalsourceid><addsrcrecordid>eNpFUMtKAzEUDaJgrX5CcRCXTnvzbLIU8QUFF9p1SNNMO8M4GZMM6N-bMkVXd3Ge9yA0wzDHoOiicd8bnxYc5nHo-1bjuaL8BE0wE1ASRvEpmgAQUoLiy3N0EWMDABw4n6C7db81yRW-K-Jgg4-uSMF0sfchFXVX7Ovd3oWib02X4iU6q0wb3dXxTtH66fHj4aVcvT2_PtyvSks5TaXa5lBbWV5ZRSxdUsfYFpxwauOk3DDMHMPCYmeYdQoTlqtUkksDUgnI2im6GX374L8GF5Nu_BC6HKkJZUoRASKT-Eg6tI7BVboP9acJPxqDPuyix100B33cReddsu72aG6iNW2Vv7V1_BdLsVxSmWmzkdbE5MMfTKhQggBk_HrEK-O12YVssX4ngCkQRSlITn8BR7B4dQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>234992606</pqid></control><display><type>article</type><title>Update on sucrose transport in higher plants</title><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Kuhn, C ; Barker, L ; Burkle, L ; Frommer, W.B</creator><creatorcontrib>Kuhn, C ; Barker, L ; Burkle, L ; Frommer, W.B</creatorcontrib><description>Sucrose as the major transported form of fixed carbon, must be translocated from the sites of synthesis, i.e. the green tissues, to the sites of consumption and storage, i.e. the non-green cells and organs. For apoplasmic transport, carrier-mediated processes are required at the plasma membrane. Functional complementation of modified yeast strains has enabled the isolation and characterization of a large family of sucrose carriers (SUT) from a wide variety of species. In Xenopus oocytes, electrophysiological methods demonstrated that the SUTs function as proton co-transporters. Localization studies show that at least SUT1 is present at the plasma membrane of enucleated sieve elements, indicating macromolecular transport of its mRNA or protein from the companion cell to the sieve element. Inhibition of the transport activity in several transgenic plant species proves that SUT function is essential for long-distance transport. Further experiments will be required to assign specific functions to the other members of the SUT family.</description><identifier>ISSN: 0022-0957</identifier><identifier>ISSN: 1460-2431</identifier><identifier>EISSN: 1460-2431</identifier><identifier>DOI: 10.1093/jexbot/50.suppl_1.935</identifier><identifier>CODEN: JEBOA6</identifier><language>eng</language><publisher>Oxford: OXFORD UNIVERSITY PRESS</publisher><subject>active transport ; Biological and medical sciences ; carbohydrate metabolism ; Cell membranes ; Cell physiology ; cell walls ; Fundamental and applied biological sciences. Psychology ; genetic complementation ; Leaves ; literature reviews ; Membrane Transport ; Mesophyll cells ; Metabolism ; Phloem ; Phloem loading ; photosynthates ; Photosynthesis, respiration. Anabolism, catabolism ; plant anatomy ; Plant cells ; Plant physiology ; Plant physiology and development ; plant proteins ; Plants ; plasma membrane ; Plasma membrane and permeation ; plasmodesmata ; Proteins ; Sieve elements ; sucrose ; yeasts</subject><ispartof>Journal of experimental botany, 1999-06, Vol.50 (90001), p.935-953</ispartof><rights>Oxford University Press 1999</rights><rights>1999 INIST-CNRS</rights><rights>Copyright Oxford University Press(England) Jun 1999</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-9d243cfc5fc92c373e44d0e6e9be88b414e416c1ea4ce9124505f858a08960243</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23696200$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23696200$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,799,23909,23910,25118,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1867738$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kuhn, C</creatorcontrib><creatorcontrib>Barker, L</creatorcontrib><creatorcontrib>Burkle, L</creatorcontrib><creatorcontrib>Frommer, W.B</creatorcontrib><title>Update on sucrose transport in higher plants</title><title>Journal of experimental botany</title><description>Sucrose as the major transported form of fixed carbon, must be translocated from the sites of synthesis, i.e. the green tissues, to the sites of consumption and storage, i.e. the non-green cells and organs. For apoplasmic transport, carrier-mediated processes are required at the plasma membrane. Functional complementation of modified yeast strains has enabled the isolation and characterization of a large family of sucrose carriers (SUT) from a wide variety of species. In Xenopus oocytes, electrophysiological methods demonstrated that the SUTs function as proton co-transporters. Localization studies show that at least SUT1 is present at the plasma membrane of enucleated sieve elements, indicating macromolecular transport of its mRNA or protein from the companion cell to the sieve element. Inhibition of the transport activity in several transgenic plant species proves that SUT function is essential for long-distance transport. Further experiments will be required to assign specific functions to the other members of the SUT family.</description><subject>active transport</subject><subject>Biological and medical sciences</subject><subject>carbohydrate metabolism</subject><subject>Cell membranes</subject><subject>Cell physiology</subject><subject>cell walls</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>genetic complementation</subject><subject>Leaves</subject><subject>literature reviews</subject><subject>Membrane Transport</subject><subject>Mesophyll cells</subject><subject>Metabolism</subject><subject>Phloem</subject><subject>Phloem loading</subject><subject>photosynthates</subject><subject>Photosynthesis, respiration. Anabolism, catabolism</subject><subject>plant anatomy</subject><subject>Plant cells</subject><subject>Plant physiology</subject><subject>Plant physiology and development</subject><subject>plant proteins</subject><subject>Plants</subject><subject>plasma membrane</subject><subject>Plasma membrane and permeation</subject><subject>plasmodesmata</subject><subject>Proteins</subject><subject>Sieve elements</subject><subject>sucrose</subject><subject>yeasts</subject><issn>0022-0957</issn><issn>1460-2431</issn><issn>1460-2431</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNpFUMtKAzEUDaJgrX5CcRCXTnvzbLIU8QUFF9p1SNNMO8M4GZMM6N-bMkVXd3Ge9yA0wzDHoOiicd8bnxYc5nHo-1bjuaL8BE0wE1ASRvEpmgAQUoLiy3N0EWMDABw4n6C7db81yRW-K-Jgg4-uSMF0sfchFXVX7Ovd3oWib02X4iU6q0wb3dXxTtH66fHj4aVcvT2_PtyvSks5TaXa5lBbWV5ZRSxdUsfYFpxwauOk3DDMHMPCYmeYdQoTlqtUkksDUgnI2im6GX374L8GF5Nu_BC6HKkJZUoRASKT-Eg6tI7BVboP9acJPxqDPuyix100B33cReddsu72aG6iNW2Vv7V1_BdLsVxSmWmzkdbE5MMfTKhQggBk_HrEK-O12YVssX4ngCkQRSlITn8BR7B4dQ</recordid><startdate>19990601</startdate><enddate>19990601</enddate><creator>Kuhn, C</creator><creator>Barker, L</creator><creator>Burkle, L</creator><creator>Frommer, W.B</creator><general>OXFORD UNIVERSITY PRESS</general><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>19990601</creationdate><title>Update on sucrose transport in higher plants</title><author>Kuhn, C ; Barker, L ; Burkle, L ; Frommer, W.B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-9d243cfc5fc92c373e44d0e6e9be88b414e416c1ea4ce9124505f858a08960243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>active transport</topic><topic>Biological and medical sciences</topic><topic>carbohydrate metabolism</topic><topic>Cell membranes</topic><topic>Cell physiology</topic><topic>cell walls</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>genetic complementation</topic><topic>Leaves</topic><topic>literature reviews</topic><topic>Membrane Transport</topic><topic>Mesophyll cells</topic><topic>Metabolism</topic><topic>Phloem</topic><topic>Phloem loading</topic><topic>photosynthates</topic><topic>Photosynthesis, respiration. Anabolism, catabolism</topic><topic>plant anatomy</topic><topic>Plant cells</topic><topic>Plant physiology</topic><topic>Plant physiology and development</topic><topic>plant proteins</topic><topic>Plants</topic><topic>plasma membrane</topic><topic>Plasma membrane and permeation</topic><topic>plasmodesmata</topic><topic>Proteins</topic><topic>Sieve elements</topic><topic>sucrose</topic><topic>yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuhn, C</creatorcontrib><creatorcontrib>Barker, L</creatorcontrib><creatorcontrib>Burkle, L</creatorcontrib><creatorcontrib>Frommer, W.B</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Journal of experimental botany</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuhn, C</au><au>Barker, L</au><au>Burkle, L</au><au>Frommer, W.B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Update on sucrose transport in higher plants</atitle><jtitle>Journal of experimental botany</jtitle><date>1999-06-01</date><risdate>1999</risdate><volume>50</volume><issue>90001</issue><spage>935</spage><epage>953</epage><pages>935-953</pages><issn>0022-0957</issn><issn>1460-2431</issn><eissn>1460-2431</eissn><coden>JEBOA6</coden><abstract>Sucrose as the major transported form of fixed carbon, must be translocated from the sites of synthesis, i.e. the green tissues, to the sites of consumption and storage, i.e. the non-green cells and organs. For apoplasmic transport, carrier-mediated processes are required at the plasma membrane. Functional complementation of modified yeast strains has enabled the isolation and characterization of a large family of sucrose carriers (SUT) from a wide variety of species. In Xenopus oocytes, electrophysiological methods demonstrated that the SUTs function as proton co-transporters. Localization studies show that at least SUT1 is present at the plasma membrane of enucleated sieve elements, indicating macromolecular transport of its mRNA or protein from the companion cell to the sieve element. Inhibition of the transport activity in several transgenic plant species proves that SUT function is essential for long-distance transport. Further experiments will be required to assign specific functions to the other members of the SUT family.</abstract><cop>Oxford</cop><pub>OXFORD UNIVERSITY PRESS</pub><doi>10.1093/jexbot/50.suppl_1.935</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-0957
ispartof Journal of experimental botany, 1999-06, Vol.50 (90001), p.935-953
issn 0022-0957
1460-2431
1460-2431
language eng
recordid cdi_proquest_journals_234992606
source Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current); Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects active transport
Biological and medical sciences
carbohydrate metabolism
Cell membranes
Cell physiology
cell walls
Fundamental and applied biological sciences. Psychology
genetic complementation
Leaves
literature reviews
Membrane Transport
Mesophyll cells
Metabolism
Phloem
Phloem loading
photosynthates
Photosynthesis, respiration. Anabolism, catabolism
plant anatomy
Plant cells
Plant physiology
Plant physiology and development
plant proteins
Plants
plasma membrane
Plasma membrane and permeation
plasmodesmata
Proteins
Sieve elements
sucrose
yeasts
title Update on sucrose transport in higher plants
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T11%3A06%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Update%20on%20sucrose%20transport%20in%20higher%20plants&rft.jtitle=Journal%20of%20experimental%20botany&rft.au=Kuhn,%20C&rft.date=1999-06-01&rft.volume=50&rft.issue=90001&rft.spage=935&rft.epage=953&rft.pages=935-953&rft.issn=0022-0957&rft.eissn=1460-2431&rft.coden=JEBOA6&rft_id=info:doi/10.1093/jexbot/50.suppl_1.935&rft_dat=%3Cjstor_proqu%3E23696200%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=234992606&rft_id=info:pmid/&rft_jstor_id=23696200&rfr_iscdi=true