Update on sucrose transport in higher plants
Sucrose as the major transported form of fixed carbon, must be translocated from the sites of synthesis, i.e. the green tissues, to the sites of consumption and storage, i.e. the non-green cells and organs. For apoplasmic transport, carrier-mediated processes are required at the plasma membrane. Fun...
Gespeichert in:
Veröffentlicht in: | Journal of experimental botany 1999-06, Vol.50 (90001), p.935-953 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 953 |
---|---|
container_issue | 90001 |
container_start_page | 935 |
container_title | Journal of experimental botany |
container_volume | 50 |
creator | Kuhn, C Barker, L Burkle, L Frommer, W.B |
description | Sucrose as the major transported form of fixed carbon, must be translocated from the sites of synthesis, i.e. the green tissues, to the sites of consumption and storage, i.e. the non-green cells and organs. For apoplasmic transport, carrier-mediated processes are required at the plasma membrane. Functional complementation of modified yeast strains has enabled the isolation and characterization of a large family of sucrose carriers (SUT) from a wide variety of species. In Xenopus oocytes, electrophysiological methods demonstrated that the SUTs function as proton co-transporters. Localization studies show that at least SUT1 is present at the plasma membrane of enucleated sieve elements, indicating macromolecular transport of its mRNA or protein from the companion cell to the sieve element. Inhibition of the transport activity in several transgenic plant species proves that SUT function is essential for long-distance transport. Further experiments will be required to assign specific functions to the other members of the SUT family. |
doi_str_mv | 10.1093/jexbot/50.suppl_1.935 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_234992606</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23696200</jstor_id><sourcerecordid>23696200</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-9d243cfc5fc92c373e44d0e6e9be88b414e416c1ea4ce9124505f858a08960243</originalsourceid><addsrcrecordid>eNpFUMtKAzEUDaJgrX5CcRCXTnvzbLIU8QUFF9p1SNNMO8M4GZMM6N-bMkVXd3Ge9yA0wzDHoOiicd8bnxYc5nHo-1bjuaL8BE0wE1ASRvEpmgAQUoLiy3N0EWMDABw4n6C7db81yRW-K-Jgg4-uSMF0sfchFXVX7Ovd3oWib02X4iU6q0wb3dXxTtH66fHj4aVcvT2_PtyvSks5TaXa5lBbWV5ZRSxdUsfYFpxwauOk3DDMHMPCYmeYdQoTlqtUkksDUgnI2im6GX374L8GF5Nu_BC6HKkJZUoRASKT-Eg6tI7BVboP9acJPxqDPuyix100B33cReddsu72aG6iNW2Vv7V1_BdLsVxSmWmzkdbE5MMfTKhQggBk_HrEK-O12YVssX4ngCkQRSlITn8BR7B4dQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>234992606</pqid></control><display><type>article</type><title>Update on sucrose transport in higher plants</title><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Kuhn, C ; Barker, L ; Burkle, L ; Frommer, W.B</creator><creatorcontrib>Kuhn, C ; Barker, L ; Burkle, L ; Frommer, W.B</creatorcontrib><description>Sucrose as the major transported form of fixed carbon, must be translocated from the sites of synthesis, i.e. the green tissues, to the sites of consumption and storage, i.e. the non-green cells and organs. For apoplasmic transport, carrier-mediated processes are required at the plasma membrane. Functional complementation of modified yeast strains has enabled the isolation and characterization of a large family of sucrose carriers (SUT) from a wide variety of species. In Xenopus oocytes, electrophysiological methods demonstrated that the SUTs function as proton co-transporters. Localization studies show that at least SUT1 is present at the plasma membrane of enucleated sieve elements, indicating macromolecular transport of its mRNA or protein from the companion cell to the sieve element. Inhibition of the transport activity in several transgenic plant species proves that SUT function is essential for long-distance transport. Further experiments will be required to assign specific functions to the other members of the SUT family.</description><identifier>ISSN: 0022-0957</identifier><identifier>ISSN: 1460-2431</identifier><identifier>EISSN: 1460-2431</identifier><identifier>DOI: 10.1093/jexbot/50.suppl_1.935</identifier><identifier>CODEN: JEBOA6</identifier><language>eng</language><publisher>Oxford: OXFORD UNIVERSITY PRESS</publisher><subject>active transport ; Biological and medical sciences ; carbohydrate metabolism ; Cell membranes ; Cell physiology ; cell walls ; Fundamental and applied biological sciences. Psychology ; genetic complementation ; Leaves ; literature reviews ; Membrane Transport ; Mesophyll cells ; Metabolism ; Phloem ; Phloem loading ; photosynthates ; Photosynthesis, respiration. Anabolism, catabolism ; plant anatomy ; Plant cells ; Plant physiology ; Plant physiology and development ; plant proteins ; Plants ; plasma membrane ; Plasma membrane and permeation ; plasmodesmata ; Proteins ; Sieve elements ; sucrose ; yeasts</subject><ispartof>Journal of experimental botany, 1999-06, Vol.50 (90001), p.935-953</ispartof><rights>Oxford University Press 1999</rights><rights>1999 INIST-CNRS</rights><rights>Copyright Oxford University Press(England) Jun 1999</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-9d243cfc5fc92c373e44d0e6e9be88b414e416c1ea4ce9124505f858a08960243</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23696200$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23696200$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,799,23909,23910,25118,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1867738$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kuhn, C</creatorcontrib><creatorcontrib>Barker, L</creatorcontrib><creatorcontrib>Burkle, L</creatorcontrib><creatorcontrib>Frommer, W.B</creatorcontrib><title>Update on sucrose transport in higher plants</title><title>Journal of experimental botany</title><description>Sucrose as the major transported form of fixed carbon, must be translocated from the sites of synthesis, i.e. the green tissues, to the sites of consumption and storage, i.e. the non-green cells and organs. For apoplasmic transport, carrier-mediated processes are required at the plasma membrane. Functional complementation of modified yeast strains has enabled the isolation and characterization of a large family of sucrose carriers (SUT) from a wide variety of species. In Xenopus oocytes, electrophysiological methods demonstrated that the SUTs function as proton co-transporters. Localization studies show that at least SUT1 is present at the plasma membrane of enucleated sieve elements, indicating macromolecular transport of its mRNA or protein from the companion cell to the sieve element. Inhibition of the transport activity in several transgenic plant species proves that SUT function is essential for long-distance transport. Further experiments will be required to assign specific functions to the other members of the SUT family.</description><subject>active transport</subject><subject>Biological and medical sciences</subject><subject>carbohydrate metabolism</subject><subject>Cell membranes</subject><subject>Cell physiology</subject><subject>cell walls</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>genetic complementation</subject><subject>Leaves</subject><subject>literature reviews</subject><subject>Membrane Transport</subject><subject>Mesophyll cells</subject><subject>Metabolism</subject><subject>Phloem</subject><subject>Phloem loading</subject><subject>photosynthates</subject><subject>Photosynthesis, respiration. Anabolism, catabolism</subject><subject>plant anatomy</subject><subject>Plant cells</subject><subject>Plant physiology</subject><subject>Plant physiology and development</subject><subject>plant proteins</subject><subject>Plants</subject><subject>plasma membrane</subject><subject>Plasma membrane and permeation</subject><subject>plasmodesmata</subject><subject>Proteins</subject><subject>Sieve elements</subject><subject>sucrose</subject><subject>yeasts</subject><issn>0022-0957</issn><issn>1460-2431</issn><issn>1460-2431</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNpFUMtKAzEUDaJgrX5CcRCXTnvzbLIU8QUFF9p1SNNMO8M4GZMM6N-bMkVXd3Ge9yA0wzDHoOiicd8bnxYc5nHo-1bjuaL8BE0wE1ASRvEpmgAQUoLiy3N0EWMDABw4n6C7db81yRW-K-Jgg4-uSMF0sfchFXVX7Ovd3oWib02X4iU6q0wb3dXxTtH66fHj4aVcvT2_PtyvSks5TaXa5lBbWV5ZRSxdUsfYFpxwauOk3DDMHMPCYmeYdQoTlqtUkksDUgnI2im6GX374L8GF5Nu_BC6HKkJZUoRASKT-Eg6tI7BVboP9acJPxqDPuyix100B33cReddsu72aG6iNW2Vv7V1_BdLsVxSmWmzkdbE5MMfTKhQggBk_HrEK-O12YVssX4ngCkQRSlITn8BR7B4dQ</recordid><startdate>19990601</startdate><enddate>19990601</enddate><creator>Kuhn, C</creator><creator>Barker, L</creator><creator>Burkle, L</creator><creator>Frommer, W.B</creator><general>OXFORD UNIVERSITY PRESS</general><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>19990601</creationdate><title>Update on sucrose transport in higher plants</title><author>Kuhn, C ; Barker, L ; Burkle, L ; Frommer, W.B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-9d243cfc5fc92c373e44d0e6e9be88b414e416c1ea4ce9124505f858a08960243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>active transport</topic><topic>Biological and medical sciences</topic><topic>carbohydrate metabolism</topic><topic>Cell membranes</topic><topic>Cell physiology</topic><topic>cell walls</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>genetic complementation</topic><topic>Leaves</topic><topic>literature reviews</topic><topic>Membrane Transport</topic><topic>Mesophyll cells</topic><topic>Metabolism</topic><topic>Phloem</topic><topic>Phloem loading</topic><topic>photosynthates</topic><topic>Photosynthesis, respiration. Anabolism, catabolism</topic><topic>plant anatomy</topic><topic>Plant cells</topic><topic>Plant physiology</topic><topic>Plant physiology and development</topic><topic>plant proteins</topic><topic>Plants</topic><topic>plasma membrane</topic><topic>Plasma membrane and permeation</topic><topic>plasmodesmata</topic><topic>Proteins</topic><topic>Sieve elements</topic><topic>sucrose</topic><topic>yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuhn, C</creatorcontrib><creatorcontrib>Barker, L</creatorcontrib><creatorcontrib>Burkle, L</creatorcontrib><creatorcontrib>Frommer, W.B</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Journal of experimental botany</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuhn, C</au><au>Barker, L</au><au>Burkle, L</au><au>Frommer, W.B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Update on sucrose transport in higher plants</atitle><jtitle>Journal of experimental botany</jtitle><date>1999-06-01</date><risdate>1999</risdate><volume>50</volume><issue>90001</issue><spage>935</spage><epage>953</epage><pages>935-953</pages><issn>0022-0957</issn><issn>1460-2431</issn><eissn>1460-2431</eissn><coden>JEBOA6</coden><abstract>Sucrose as the major transported form of fixed carbon, must be translocated from the sites of synthesis, i.e. the green tissues, to the sites of consumption and storage, i.e. the non-green cells and organs. For apoplasmic transport, carrier-mediated processes are required at the plasma membrane. Functional complementation of modified yeast strains has enabled the isolation and characterization of a large family of sucrose carriers (SUT) from a wide variety of species. In Xenopus oocytes, electrophysiological methods demonstrated that the SUTs function as proton co-transporters. Localization studies show that at least SUT1 is present at the plasma membrane of enucleated sieve elements, indicating macromolecular transport of its mRNA or protein from the companion cell to the sieve element. Inhibition of the transport activity in several transgenic plant species proves that SUT function is essential for long-distance transport. Further experiments will be required to assign specific functions to the other members of the SUT family.</abstract><cop>Oxford</cop><pub>OXFORD UNIVERSITY PRESS</pub><doi>10.1093/jexbot/50.suppl_1.935</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-0957 |
ispartof | Journal of experimental botany, 1999-06, Vol.50 (90001), p.935-953 |
issn | 0022-0957 1460-2431 1460-2431 |
language | eng |
recordid | cdi_proquest_journals_234992606 |
source | Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current); Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | active transport Biological and medical sciences carbohydrate metabolism Cell membranes Cell physiology cell walls Fundamental and applied biological sciences. Psychology genetic complementation Leaves literature reviews Membrane Transport Mesophyll cells Metabolism Phloem Phloem loading photosynthates Photosynthesis, respiration. Anabolism, catabolism plant anatomy Plant cells Plant physiology Plant physiology and development plant proteins Plants plasma membrane Plasma membrane and permeation plasmodesmata Proteins Sieve elements sucrose yeasts |
title | Update on sucrose transport in higher plants |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T11%3A06%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Update%20on%20sucrose%20transport%20in%20higher%20plants&rft.jtitle=Journal%20of%20experimental%20botany&rft.au=Kuhn,%20C&rft.date=1999-06-01&rft.volume=50&rft.issue=90001&rft.spage=935&rft.epage=953&rft.pages=935-953&rft.issn=0022-0957&rft.eissn=1460-2431&rft.coden=JEBOA6&rft_id=info:doi/10.1093/jexbot/50.suppl_1.935&rft_dat=%3Cjstor_proqu%3E23696200%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=234992606&rft_id=info:pmid/&rft_jstor_id=23696200&rfr_iscdi=true |