Groundwater level trend analysis using the statistical auto-regressive HARTT method

In this study, the Hydrograph Analysis: Rainfall and Time-Trends (HARTT) model was used to determine the contribution of climatic and non-climatic stresses on groundwater levels in the Lake Haramaya well-field, Ethiopia. Monthly precipitation and monitored water-level data were used as explanatory v...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Hydrological Research Letters 2020, Vol.14(1), pp.17-22
Hauptverfasser: Zeru, Guesh, Alamirew, Tena, Shishaye, Haile A., Olmana, Megersa, Tadesse, Nata, Reading, Michael J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 22
container_issue 1
container_start_page 17
container_title Hydrological Research Letters
container_volume 14
creator Zeru, Guesh
Alamirew, Tena
Shishaye, Haile A.
Olmana, Megersa
Tadesse, Nata
Reading, Michael J.
description In this study, the Hydrograph Analysis: Rainfall and Time-Trends (HARTT) model was used to determine the contribution of climatic and non-climatic stresses on groundwater levels in the Lake Haramaya well-field, Ethiopia. Monthly precipitation and monitored water-level data were used as explanatory variables of the method. Variability in rainfall explained 81.3% of groundwater levels using 2-month average time-delay. The coefficient of the impact of rainfall on groundwater level (K1) was found to be 0.00562 ± 0.0007 mm. This K1 value indicates that a 1 mm increase in rainfall from the annual average rainfall raises the groundwater-level by 0.00562 ± 0.0007 mm, while 1 mm decrease in rainfall causes a 0.00562 ± 0.0007 mm drop in groundwater-level in the area. However, the average falling trend of the groundwater level (K2) was 1.51 ± 0.133 m/year, even with rainfall causing water-levels to rise between 1.01 to 3.29 m/year. With decreased rainfall, rainfall accounted for about 19.5% of the total-drawdown, while 80.5% was due to cumulative effects of non-climatic variables. This shows that rainfall inputs are negated by cumulative non-climatic stresses leading to the long-term net decline in groundwater level. Projected water-level results show that groundwater levels will be below pumping positions in
doi_str_mv 10.3178/hrl.14.17
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2349819246</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2349819246</sourcerecordid><originalsourceid>FETCH-LOGICAL-c512t-ea3b45698b379b3eab628e84ccf673942c094716b46851011577aa81e6a6c1073</originalsourceid><addsrcrecordid>eNpNkFFLwzAUhYMoOKcP_oOATz609jZpkoIvY-gmDASdzyHN7taOrp1JOtm_t6MyfDqXw8fhnkPIPSQxA6meSlfHwGOQF2QESqUR4yAu_93X5Mb7bZIIladsRD5nru2a1Y8J6GiNB6xpcNisqGlMffSVp52vmg0NJVIfTKh8qKypqelCGzncOPS-OiCdTz6WS7rDULarW3K1NrXHuz8dk6_Xl-V0Hi3eZ2_TySKyGaQhQsMKnolcFUzmBUNTiFSh4tauhWQ5T22Scwmi4EJlkABkUhqjAIURFhLJxuRhyN279rtDH_S27Vz_t9cp47mCPOWipx4HyrrWe4drvXfVzrijhkSfNtP9Zhq4hlPi88Bu-64bPJPG9a1rPJMDfrZtaZzGhv0CJZ11AQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2349819246</pqid></control><display><type>article</type><title>Groundwater level trend analysis using the statistical auto-regressive HARTT method</title><source>J-STAGE Free</source><source>DOAJ Directory of Open Access Journals</source><creator>Zeru, Guesh ; Alamirew, Tena ; Shishaye, Haile A. ; Olmana, Megersa ; Tadesse, Nata ; Reading, Michael J.</creator><creatorcontrib>Zeru, Guesh ; Alamirew, Tena ; Shishaye, Haile A. ; Olmana, Megersa ; Tadesse, Nata ; Reading, Michael J.</creatorcontrib><description>In this study, the Hydrograph Analysis: Rainfall and Time-Trends (HARTT) model was used to determine the contribution of climatic and non-climatic stresses on groundwater levels in the Lake Haramaya well-field, Ethiopia. Monthly precipitation and monitored water-level data were used as explanatory variables of the method. Variability in rainfall explained 81.3% of groundwater levels using 2-month average time-delay. The coefficient of the impact of rainfall on groundwater level (K1) was found to be 0.00562 ± 0.0007 mm. This K1 value indicates that a 1 mm increase in rainfall from the annual average rainfall raises the groundwater-level by 0.00562 ± 0.0007 mm, while 1 mm decrease in rainfall causes a 0.00562 ± 0.0007 mm drop in groundwater-level in the area. However, the average falling trend of the groundwater level (K2) was 1.51 ± 0.133 m/year, even with rainfall causing water-levels to rise between 1.01 to 3.29 m/year. With decreased rainfall, rainfall accounted for about 19.5% of the total-drawdown, while 80.5% was due to cumulative effects of non-climatic variables. This shows that rainfall inputs are negated by cumulative non-climatic stresses leading to the long-term net decline in groundwater level. Projected water-level results show that groundwater levels will be below pumping positions in &lt;24 years which may have dire consequences for local landowners.</description><identifier>ISSN: 1882-3416</identifier><identifier>EISSN: 1882-3416</identifier><identifier>DOI: 10.3178/hrl.14.17</identifier><language>eng</language><publisher>Tokyo: Japan Society of Hydrology and Water Resources (JSHWR) / Japanese Association of Groundwater Hydrology (JAGH) / Japanese Association of Hydrological Sciences (JAHS) / Japanese Society of Physical Hydrology (JSPH)</publisher><subject>Annual rainfall ; Climate change ; Climate effects ; Drawdown ; Groundwater ; Groundwater levels ; Hydrograph analysis ; Hydrologic data ; Lakes ; Monthly precipitation ; Rain ; Rainfall impact ; Regression analysis ; Statistical analysis ; Stresses ; Trend analysis ; Trends ; Water levels ; Water table</subject><ispartof>Hydrological Research Letters, 2020, Vol.14(1), pp.17-22</ispartof><rights>2020 The Author(s) CC-BY 4.0 (Before 2017: Copyright © Japan Society of Hydrology and Water Resources)</rights><rights>Copyright Japan Science and Technology Agency 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c512t-ea3b45698b379b3eab628e84ccf673942c094716b46851011577aa81e6a6c1073</citedby><cites>FETCH-LOGICAL-c512t-ea3b45698b379b3eab628e84ccf673942c094716b46851011577aa81e6a6c1073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,1877,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Zeru, Guesh</creatorcontrib><creatorcontrib>Alamirew, Tena</creatorcontrib><creatorcontrib>Shishaye, Haile A.</creatorcontrib><creatorcontrib>Olmana, Megersa</creatorcontrib><creatorcontrib>Tadesse, Nata</creatorcontrib><creatorcontrib>Reading, Michael J.</creatorcontrib><title>Groundwater level trend analysis using the statistical auto-regressive HARTT method</title><title>Hydrological Research Letters</title><addtitle>Hydrological Research Letters</addtitle><description>In this study, the Hydrograph Analysis: Rainfall and Time-Trends (HARTT) model was used to determine the contribution of climatic and non-climatic stresses on groundwater levels in the Lake Haramaya well-field, Ethiopia. Monthly precipitation and monitored water-level data were used as explanatory variables of the method. Variability in rainfall explained 81.3% of groundwater levels using 2-month average time-delay. The coefficient of the impact of rainfall on groundwater level (K1) was found to be 0.00562 ± 0.0007 mm. This K1 value indicates that a 1 mm increase in rainfall from the annual average rainfall raises the groundwater-level by 0.00562 ± 0.0007 mm, while 1 mm decrease in rainfall causes a 0.00562 ± 0.0007 mm drop in groundwater-level in the area. However, the average falling trend of the groundwater level (K2) was 1.51 ± 0.133 m/year, even with rainfall causing water-levels to rise between 1.01 to 3.29 m/year. With decreased rainfall, rainfall accounted for about 19.5% of the total-drawdown, while 80.5% was due to cumulative effects of non-climatic variables. This shows that rainfall inputs are negated by cumulative non-climatic stresses leading to the long-term net decline in groundwater level. Projected water-level results show that groundwater levels will be below pumping positions in &lt;24 years which may have dire consequences for local landowners.</description><subject>Annual rainfall</subject><subject>Climate change</subject><subject>Climate effects</subject><subject>Drawdown</subject><subject>Groundwater</subject><subject>Groundwater levels</subject><subject>Hydrograph analysis</subject><subject>Hydrologic data</subject><subject>Lakes</subject><subject>Monthly precipitation</subject><subject>Rain</subject><subject>Rainfall impact</subject><subject>Regression analysis</subject><subject>Statistical analysis</subject><subject>Stresses</subject><subject>Trend analysis</subject><subject>Trends</subject><subject>Water levels</subject><subject>Water table</subject><issn>1882-3416</issn><issn>1882-3416</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpNkFFLwzAUhYMoOKcP_oOATz609jZpkoIvY-gmDASdzyHN7taOrp1JOtm_t6MyfDqXw8fhnkPIPSQxA6meSlfHwGOQF2QESqUR4yAu_93X5Mb7bZIIladsRD5nru2a1Y8J6GiNB6xpcNisqGlMffSVp52vmg0NJVIfTKh8qKypqelCGzncOPS-OiCdTz6WS7rDULarW3K1NrXHuz8dk6_Xl-V0Hi3eZ2_TySKyGaQhQsMKnolcFUzmBUNTiFSh4tauhWQ5T22Scwmi4EJlkABkUhqjAIURFhLJxuRhyN279rtDH_S27Vz_t9cp47mCPOWipx4HyrrWe4drvXfVzrijhkSfNtP9Zhq4hlPi88Bu-64bPJPG9a1rPJMDfrZtaZzGhv0CJZ11AQ</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Zeru, Guesh</creator><creator>Alamirew, Tena</creator><creator>Shishaye, Haile A.</creator><creator>Olmana, Megersa</creator><creator>Tadesse, Nata</creator><creator>Reading, Michael J.</creator><general>Japan Society of Hydrology and Water Resources (JSHWR) / Japanese Association of Groundwater Hydrology (JAGH) / Japanese Association of Hydrological Sciences (JAHS) / Japanese Society of Physical Hydrology (JSPH)</general><general>Japan Science and Technology Agency</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope></search><sort><creationdate>2020</creationdate><title>Groundwater level trend analysis using the statistical auto-regressive HARTT method</title><author>Zeru, Guesh ; Alamirew, Tena ; Shishaye, Haile A. ; Olmana, Megersa ; Tadesse, Nata ; Reading, Michael J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c512t-ea3b45698b379b3eab628e84ccf673942c094716b46851011577aa81e6a6c1073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Annual rainfall</topic><topic>Climate change</topic><topic>Climate effects</topic><topic>Drawdown</topic><topic>Groundwater</topic><topic>Groundwater levels</topic><topic>Hydrograph analysis</topic><topic>Hydrologic data</topic><topic>Lakes</topic><topic>Monthly precipitation</topic><topic>Rain</topic><topic>Rainfall impact</topic><topic>Regression analysis</topic><topic>Statistical analysis</topic><topic>Stresses</topic><topic>Trend analysis</topic><topic>Trends</topic><topic>Water levels</topic><topic>Water table</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zeru, Guesh</creatorcontrib><creatorcontrib>Alamirew, Tena</creatorcontrib><creatorcontrib>Shishaye, Haile A.</creatorcontrib><creatorcontrib>Olmana, Megersa</creatorcontrib><creatorcontrib>Tadesse, Nata</creatorcontrib><creatorcontrib>Reading, Michael J.</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Hydrological Research Letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zeru, Guesh</au><au>Alamirew, Tena</au><au>Shishaye, Haile A.</au><au>Olmana, Megersa</au><au>Tadesse, Nata</au><au>Reading, Michael J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Groundwater level trend analysis using the statistical auto-regressive HARTT method</atitle><jtitle>Hydrological Research Letters</jtitle><addtitle>Hydrological Research Letters</addtitle><date>2020</date><risdate>2020</risdate><volume>14</volume><issue>1</issue><spage>17</spage><epage>22</epage><pages>17-22</pages><issn>1882-3416</issn><eissn>1882-3416</eissn><abstract>In this study, the Hydrograph Analysis: Rainfall and Time-Trends (HARTT) model was used to determine the contribution of climatic and non-climatic stresses on groundwater levels in the Lake Haramaya well-field, Ethiopia. Monthly precipitation and monitored water-level data were used as explanatory variables of the method. Variability in rainfall explained 81.3% of groundwater levels using 2-month average time-delay. The coefficient of the impact of rainfall on groundwater level (K1) was found to be 0.00562 ± 0.0007 mm. This K1 value indicates that a 1 mm increase in rainfall from the annual average rainfall raises the groundwater-level by 0.00562 ± 0.0007 mm, while 1 mm decrease in rainfall causes a 0.00562 ± 0.0007 mm drop in groundwater-level in the area. However, the average falling trend of the groundwater level (K2) was 1.51 ± 0.133 m/year, even with rainfall causing water-levels to rise between 1.01 to 3.29 m/year. With decreased rainfall, rainfall accounted for about 19.5% of the total-drawdown, while 80.5% was due to cumulative effects of non-climatic variables. This shows that rainfall inputs are negated by cumulative non-climatic stresses leading to the long-term net decline in groundwater level. Projected water-level results show that groundwater levels will be below pumping positions in &lt;24 years which may have dire consequences for local landowners.</abstract><cop>Tokyo</cop><pub>Japan Society of Hydrology and Water Resources (JSHWR) / Japanese Association of Groundwater Hydrology (JAGH) / Japanese Association of Hydrological Sciences (JAHS) / Japanese Society of Physical Hydrology (JSPH)</pub><doi>10.3178/hrl.14.17</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1882-3416
ispartof Hydrological Research Letters, 2020, Vol.14(1), pp.17-22
issn 1882-3416
1882-3416
language eng
recordid cdi_proquest_journals_2349819246
source J-STAGE Free; DOAJ Directory of Open Access Journals
subjects Annual rainfall
Climate change
Climate effects
Drawdown
Groundwater
Groundwater levels
Hydrograph analysis
Hydrologic data
Lakes
Monthly precipitation
Rain
Rainfall impact
Regression analysis
Statistical analysis
Stresses
Trend analysis
Trends
Water levels
Water table
title Groundwater level trend analysis using the statistical auto-regressive HARTT method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T11%3A15%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Groundwater%20level%20trend%20analysis%20using%20the%20statistical%20auto-regressive%20HARTT%20method&rft.jtitle=Hydrological%20Research%20Letters&rft.au=Zeru,%20Guesh&rft.date=2020&rft.volume=14&rft.issue=1&rft.spage=17&rft.epage=22&rft.pages=17-22&rft.issn=1882-3416&rft.eissn=1882-3416&rft_id=info:doi/10.3178/hrl.14.17&rft_dat=%3Cproquest_cross%3E2349819246%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2349819246&rft_id=info:pmid/&rfr_iscdi=true