Vertices of Modules and Decomposition Numbers of C2 ≀ Sn

Given n ∈ N , we consider the imprimitive wreath product C 2 ≀ S n . We study the structure of the p -modular reduction of modules whose ordinary characters form an involution model of C 2 ≀ S n , where p is an odd prime. We describe the vertices of these modules, and we use this description of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algebras and representation theory 2020, Vol.23 (1), p.95-123
1. Verfasser: Kochhar, Jasdeep
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 123
container_issue 1
container_start_page 95
container_title Algebras and representation theory
container_volume 23
creator Kochhar, Jasdeep
description Given n ∈ N , we consider the imprimitive wreath product C 2 ≀ S n . We study the structure of the p -modular reduction of modules whose ordinary characters form an involution model of C 2 ≀ S n , where p is an odd prime. We describe the vertices of these modules, and we use this description of the vertices to determine certain decomposition numbers of C 2 ≀ S n .
doi_str_mv 10.1007/s10468-018-9839-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2349747280</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2349747280</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1138-e07b1a9b056aaeaf8b48c17eaba76535510b2c0fa2647d4bbca5ac98f53603f93</originalsourceid><addsrcrecordid>eNp1kLlOAzEURS0EEiHwAXQjURue7fFGh8IqBShYRGfZjgdNlIyDnSnoaPlNvgSHQaKierc49z7pIHRI4JgAyJNMoBYKA1FYK6ax2kIjwiXFGqTeLpkpgTVlL7toL-c5AGihyAidPoe0bn3IVWyq2zjrFyXabladBx-Xq5jbdRu76q5fupB-oAmtvj4_qoduH-00dpHDwe8do6fLi8fJNZ7eX91MzqbYk_IVB5COWO2AC2uDbZSrlScyWGel4IxzAo56aCwVtZzVznnLrdeq4UwAazQbo6Nhd5XiWx_y2sxjn7ry0lBWa1lLqqBQZKB8ijmn0JhVapc2vRsCZqPIDIpMUWQ2iowqHTp0cmG715D-lv8vfQPz3miX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2349747280</pqid></control><display><type>article</type><title>Vertices of Modules and Decomposition Numbers of C2 ≀ Sn</title><source>SpringerLink Journals - AutoHoldings</source><creator>Kochhar, Jasdeep</creator><creatorcontrib>Kochhar, Jasdeep</creatorcontrib><description>Given n ∈ N , we consider the imprimitive wreath product C 2 ≀ S n . We study the structure of the p -modular reduction of modules whose ordinary characters form an involution model of C 2 ≀ S n , where p is an odd prime. We describe the vertices of these modules, and we use this description of the vertices to determine certain decomposition numbers of C 2 ≀ S n .</description><identifier>ISSN: 1386-923X</identifier><identifier>EISSN: 1572-9079</identifier><identifier>DOI: 10.1007/s10468-018-9839-8</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Apexes ; Associative Rings and Algebras ; Commutative Rings and Algebras ; Decomposition ; Mathematics ; Mathematics and Statistics ; Modular structures ; Modules ; Non-associative Rings and Algebras</subject><ispartof>Algebras and representation theory, 2020, Vol.23 (1), p.95-123</ispartof><rights>Springer Nature B.V. 2018</rights><rights>2018© Springer Nature B.V. 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1138-e07b1a9b056aaeaf8b48c17eaba76535510b2c0fa2647d4bbca5ac98f53603f93</cites><orcidid>0000-0003-4742-3070</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10468-018-9839-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10468-018-9839-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Kochhar, Jasdeep</creatorcontrib><title>Vertices of Modules and Decomposition Numbers of C2 ≀ Sn</title><title>Algebras and representation theory</title><addtitle>Algebr Represent Theor</addtitle><description>Given n ∈ N , we consider the imprimitive wreath product C 2 ≀ S n . We study the structure of the p -modular reduction of modules whose ordinary characters form an involution model of C 2 ≀ S n , where p is an odd prime. We describe the vertices of these modules, and we use this description of the vertices to determine certain decomposition numbers of C 2 ≀ S n .</description><subject>Apexes</subject><subject>Associative Rings and Algebras</subject><subject>Commutative Rings and Algebras</subject><subject>Decomposition</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Modular structures</subject><subject>Modules</subject><subject>Non-associative Rings and Algebras</subject><issn>1386-923X</issn><issn>1572-9079</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kLlOAzEURS0EEiHwAXQjURue7fFGh8IqBShYRGfZjgdNlIyDnSnoaPlNvgSHQaKierc49z7pIHRI4JgAyJNMoBYKA1FYK6ax2kIjwiXFGqTeLpkpgTVlL7toL-c5AGihyAidPoe0bn3IVWyq2zjrFyXabladBx-Xq5jbdRu76q5fupB-oAmtvj4_qoduH-00dpHDwe8do6fLi8fJNZ7eX91MzqbYk_IVB5COWO2AC2uDbZSrlScyWGel4IxzAo56aCwVtZzVznnLrdeq4UwAazQbo6Nhd5XiWx_y2sxjn7ry0lBWa1lLqqBQZKB8ijmn0JhVapc2vRsCZqPIDIpMUWQ2iowqHTp0cmG715D-lv8vfQPz3miX</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Kochhar, Jasdeep</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4742-3070</orcidid></search><sort><creationdate>2020</creationdate><title>Vertices of Modules and Decomposition Numbers of C2 ≀ Sn</title><author>Kochhar, Jasdeep</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1138-e07b1a9b056aaeaf8b48c17eaba76535510b2c0fa2647d4bbca5ac98f53603f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Apexes</topic><topic>Associative Rings and Algebras</topic><topic>Commutative Rings and Algebras</topic><topic>Decomposition</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Modular structures</topic><topic>Modules</topic><topic>Non-associative Rings and Algebras</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kochhar, Jasdeep</creatorcontrib><collection>CrossRef</collection><jtitle>Algebras and representation theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kochhar, Jasdeep</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vertices of Modules and Decomposition Numbers of C2 ≀ Sn</atitle><jtitle>Algebras and representation theory</jtitle><stitle>Algebr Represent Theor</stitle><date>2020</date><risdate>2020</risdate><volume>23</volume><issue>1</issue><spage>95</spage><epage>123</epage><pages>95-123</pages><issn>1386-923X</issn><eissn>1572-9079</eissn><abstract>Given n ∈ N , we consider the imprimitive wreath product C 2 ≀ S n . We study the structure of the p -modular reduction of modules whose ordinary characters form an involution model of C 2 ≀ S n , where p is an odd prime. We describe the vertices of these modules, and we use this description of the vertices to determine certain decomposition numbers of C 2 ≀ S n .</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10468-018-9839-8</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0003-4742-3070</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1386-923X
ispartof Algebras and representation theory, 2020, Vol.23 (1), p.95-123
issn 1386-923X
1572-9079
language eng
recordid cdi_proquest_journals_2349747280
source SpringerLink Journals - AutoHoldings
subjects Apexes
Associative Rings and Algebras
Commutative Rings and Algebras
Decomposition
Mathematics
Mathematics and Statistics
Modular structures
Modules
Non-associative Rings and Algebras
title Vertices of Modules and Decomposition Numbers of C2 ≀ Sn
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T04%3A58%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vertices%20of%20Modules%20and%20Decomposition%20Numbers%20of%20C2%20%E2%89%80%20Sn&rft.jtitle=Algebras%20and%20representation%20theory&rft.au=Kochhar,%20Jasdeep&rft.date=2020&rft.volume=23&rft.issue=1&rft.spage=95&rft.epage=123&rft.pages=95-123&rft.issn=1386-923X&rft.eissn=1572-9079&rft_id=info:doi/10.1007/s10468-018-9839-8&rft_dat=%3Cproquest_cross%3E2349747280%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2349747280&rft_id=info:pmid/&rfr_iscdi=true