Interaction behavior recognition from multiple views
This paper proposed a novel multi-view interactive behavior recognition method based on local self-similarity descriptors and graph shared multi-task learning. First, we proposed the composite interactive feature representation which encodes both the spatial distribution of local motion of interest...
Gespeichert in:
Veröffentlicht in: | Journal of Central South University 2020, Vol.27 (1), p.101-113 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 113 |
---|---|
container_issue | 1 |
container_start_page | 101 |
container_title | Journal of Central South University |
container_volume | 27 |
creator | Xia, Li-min Guo, Wei-ting Wang, Hao |
description | This paper proposed a novel multi-view interactive behavior recognition method based on local self-similarity descriptors and graph shared multi-task learning. First, we proposed the composite interactive feature representation which encodes both the spatial distribution of local motion of interest points and their contexts. Furthermore, local self-similarity descriptor represented by temporal-pyramid bag of words (BOW) was applied to decreasing the influence of observation angle change on recognition and retaining the temporal information. For the purpose of exploring latent correlation between different interactive behaviors from different views and retaining specific information of each behaviors, graph shared multi-task learning was used to learn the corresponding interactive behavior recognition model. Experiment results showed the effectiveness of the proposed method in comparison with other state-of-the-art methods on the public databases CASIA, i3Dpose dataset and self-built database for interactive behavior recognition. |
doi_str_mv | 10.1007/s11771-020-4281-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2349197084</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2349197084</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-6a2dba79ee4bd1697cf9457433548742563fb47c4aafca080eeb6f0aee5122fc3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWGp_gLcFz9Fkkk02Ryl-FApe9Byy6aRG2k1NthX_vduu4MnTDMPzvgMPIdec3XLG9F3hXGtOGTAqoeFUnZEJAGhaA4jzYWemptAYc0lmpcSWCQ5KKKMmRC66HrPzfUxd1eK7O8SUq4w-rbt4OoacttV2v-njboPVIeJXuSIXwW0Kzn7nlLw9PrzOn-ny5Wkxv19SLxroqXKwap02iLJdcWW0D0bWWgpRy0ZLqJUIrdReOhe8Yw1DbFVgDrHmAMGLKbkZe3c5fe6x9PYj7XM3vLQgpOFGs0YOFB8pn1MpGYPd5bh1-dtyZo9-7OjHDn7s0Y9VQwbGTBnYbo35r_n_0A8KxGgC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2349197084</pqid></control><display><type>article</type><title>Interaction behavior recognition from multiple views</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Xia, Li-min ; Guo, Wei-ting ; Wang, Hao</creator><creatorcontrib>Xia, Li-min ; Guo, Wei-ting ; Wang, Hao</creatorcontrib><description>This paper proposed a novel multi-view interactive behavior recognition method based on local self-similarity descriptors and graph shared multi-task learning. First, we proposed the composite interactive feature representation which encodes both the spatial distribution of local motion of interest points and their contexts. Furthermore, local self-similarity descriptor represented by temporal-pyramid bag of words (BOW) was applied to decreasing the influence of observation angle change on recognition and retaining the temporal information. For the purpose of exploring latent correlation between different interactive behaviors from different views and retaining specific information of each behaviors, graph shared multi-task learning was used to learn the corresponding interactive behavior recognition model. Experiment results showed the effectiveness of the proposed method in comparison with other state-of-the-art methods on the public databases CASIA, i3Dpose dataset and self-built database for interactive behavior recognition.</description><identifier>ISSN: 2095-2899</identifier><identifier>EISSN: 2227-5223</identifier><identifier>DOI: 10.1007/s11771-020-4281-6</identifier><language>eng</language><publisher>Changsha: Central South University</publisher><subject>Behavior ; Change detection ; Engineering ; Graphical representations ; Learning ; Metallic Materials ; Recognition ; Self-similarity ; Spatial distribution</subject><ispartof>Journal of Central South University, 2020, Vol.27 (1), p.101-113</ispartof><rights>Central South University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Central South University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-6a2dba79ee4bd1697cf9457433548742563fb47c4aafca080eeb6f0aee5122fc3</citedby><cites>FETCH-LOGICAL-c382t-6a2dba79ee4bd1697cf9457433548742563fb47c4aafca080eeb6f0aee5122fc3</cites><orcidid>0000-0002-2249-449X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11771-020-4281-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11771-020-4281-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Xia, Li-min</creatorcontrib><creatorcontrib>Guo, Wei-ting</creatorcontrib><creatorcontrib>Wang, Hao</creatorcontrib><title>Interaction behavior recognition from multiple views</title><title>Journal of Central South University</title><addtitle>J. Cent. South Univ</addtitle><description>This paper proposed a novel multi-view interactive behavior recognition method based on local self-similarity descriptors and graph shared multi-task learning. First, we proposed the composite interactive feature representation which encodes both the spatial distribution of local motion of interest points and their contexts. Furthermore, local self-similarity descriptor represented by temporal-pyramid bag of words (BOW) was applied to decreasing the influence of observation angle change on recognition and retaining the temporal information. For the purpose of exploring latent correlation between different interactive behaviors from different views and retaining specific information of each behaviors, graph shared multi-task learning was used to learn the corresponding interactive behavior recognition model. Experiment results showed the effectiveness of the proposed method in comparison with other state-of-the-art methods on the public databases CASIA, i3Dpose dataset and self-built database for interactive behavior recognition.</description><subject>Behavior</subject><subject>Change detection</subject><subject>Engineering</subject><subject>Graphical representations</subject><subject>Learning</subject><subject>Metallic Materials</subject><subject>Recognition</subject><subject>Self-similarity</subject><subject>Spatial distribution</subject><issn>2095-2899</issn><issn>2227-5223</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWGp_gLcFz9Fkkk02Ryl-FApe9Byy6aRG2k1NthX_vduu4MnTDMPzvgMPIdec3XLG9F3hXGtOGTAqoeFUnZEJAGhaA4jzYWemptAYc0lmpcSWCQ5KKKMmRC66HrPzfUxd1eK7O8SUq4w-rbt4OoacttV2v-njboPVIeJXuSIXwW0Kzn7nlLw9PrzOn-ny5Wkxv19SLxroqXKwap02iLJdcWW0D0bWWgpRy0ZLqJUIrdReOhe8Yw1DbFVgDrHmAMGLKbkZe3c5fe6x9PYj7XM3vLQgpOFGs0YOFB8pn1MpGYPd5bh1-dtyZo9-7OjHDn7s0Y9VQwbGTBnYbo35r_n_0A8KxGgC</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Xia, Li-min</creator><creator>Guo, Wei-ting</creator><creator>Wang, Hao</creator><general>Central South University</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2249-449X</orcidid></search><sort><creationdate>2020</creationdate><title>Interaction behavior recognition from multiple views</title><author>Xia, Li-min ; Guo, Wei-ting ; Wang, Hao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-6a2dba79ee4bd1697cf9457433548742563fb47c4aafca080eeb6f0aee5122fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Behavior</topic><topic>Change detection</topic><topic>Engineering</topic><topic>Graphical representations</topic><topic>Learning</topic><topic>Metallic Materials</topic><topic>Recognition</topic><topic>Self-similarity</topic><topic>Spatial distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xia, Li-min</creatorcontrib><creatorcontrib>Guo, Wei-ting</creatorcontrib><creatorcontrib>Wang, Hao</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of Central South University</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xia, Li-min</au><au>Guo, Wei-ting</au><au>Wang, Hao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interaction behavior recognition from multiple views</atitle><jtitle>Journal of Central South University</jtitle><stitle>J. Cent. South Univ</stitle><date>2020</date><risdate>2020</risdate><volume>27</volume><issue>1</issue><spage>101</spage><epage>113</epage><pages>101-113</pages><issn>2095-2899</issn><eissn>2227-5223</eissn><abstract>This paper proposed a novel multi-view interactive behavior recognition method based on local self-similarity descriptors and graph shared multi-task learning. First, we proposed the composite interactive feature representation which encodes both the spatial distribution of local motion of interest points and their contexts. Furthermore, local self-similarity descriptor represented by temporal-pyramid bag of words (BOW) was applied to decreasing the influence of observation angle change on recognition and retaining the temporal information. For the purpose of exploring latent correlation between different interactive behaviors from different views and retaining specific information of each behaviors, graph shared multi-task learning was used to learn the corresponding interactive behavior recognition model. Experiment results showed the effectiveness of the proposed method in comparison with other state-of-the-art methods on the public databases CASIA, i3Dpose dataset and self-built database for interactive behavior recognition.</abstract><cop>Changsha</cop><pub>Central South University</pub><doi>10.1007/s11771-020-4281-6</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-2249-449X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2095-2899 |
ispartof | Journal of Central South University, 2020, Vol.27 (1), p.101-113 |
issn | 2095-2899 2227-5223 |
language | eng |
recordid | cdi_proquest_journals_2349197084 |
source | Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings |
subjects | Behavior Change detection Engineering Graphical representations Learning Metallic Materials Recognition Self-similarity Spatial distribution |
title | Interaction behavior recognition from multiple views |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T06%3A16%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interaction%20behavior%20recognition%20from%20multiple%20views&rft.jtitle=Journal%20of%20Central%20South%20University&rft.au=Xia,%20Li-min&rft.date=2020&rft.volume=27&rft.issue=1&rft.spage=101&rft.epage=113&rft.pages=101-113&rft.issn=2095-2899&rft.eissn=2227-5223&rft_id=info:doi/10.1007/s11771-020-4281-6&rft_dat=%3Cproquest_cross%3E2349197084%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2349197084&rft_id=info:pmid/&rfr_iscdi=true |