Distinguishing changes in the Hadley circulation edge

The studies on poleward expansion of the Hadley circulation have mainly concentrated on linear trends with global warming. There is no consensus on how the edge of the Hadley circulation has been affected by the dynamical linkage to causes of change. Here, this study strives to make a robust assessm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical and applied climatology 2020-02, Vol.139 (3-4), p.1007-1017
Hauptverfasser: Moon, Hyejin, Ha, Kyung-Ja
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1017
container_issue 3-4
container_start_page 1007
container_title Theoretical and applied climatology
container_volume 139
creator Moon, Hyejin
Ha, Kyung-Ja
description The studies on poleward expansion of the Hadley circulation have mainly concentrated on linear trends with global warming. There is no consensus on how the edge of the Hadley circulation has been affected by the dynamical linkage to causes of change. Here, this study strives to make a robust assessment of the changes in the edge latitude of the Hadley circulation by comparing two reanalysis datasets and two theoretical models, namely the Held and Hou. J Atmos Res 37: 515-533; ( 1980 ) model (HH80) and Held ( 2000 ) model (He00). A poleward shift in both hemispheres emerged after the mid-1990s in the two reanalysis datasets, except for the Northern Hemisphere from ERA-Interim. Comparing the edge latitudes of the two reanalysis datasets, HH80 (He00) is seen to be out of phase (in-phase) in the Hadley circulation edge. He00 only shows interdecadal change regarding the poleward expansion of the Hadley circulation. We found that the dominant factors affecting change in the edge latitude of the Hadley circulation were the subtropical static stability and subtropical tropopause height. The changes in the Hadley circulation in the Northern Hemisphere (Southern Hemisphere) are associated with negative ENSO and positive AO (positive SAM).
doi_str_mv 10.1007/s00704-019-03017-1
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2348645230</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A612850641</galeid><sourcerecordid>A612850641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-25c64d34b8817f23f23b14954c7e2ad153d90eb143cc7fc31a16b1095ab388d83</originalsourceid><addsrcrecordid>eNp9kFtLwzAYhoMoOKd_wKuCV15k5tQmvRzzsMFA8ADehTRN24yunUkK7t-bWUF2Iwn54OV5kvACcI3RDCPE73w8EIMI5xBRhDnEJ2CCGWWQMUFPwSRmHPJcfJyDC-83CCGSZXwC0nvrg-3qwfomjkQ3qquNT2yXhMYkS1W2Zp9o6_TQqmD7LjFlbS7BWaVab65-5xS8Pz68LZZw_fy0WszXUNOcBEhSnbGSskIIzCtC4y4wy1OmuSGqxCktc2RiRLXmlaZY4azAKE9VQYUoBZ2Cm_Henes_B-OD3PSD6-KTklAmMpYSiiI1G6latUbaruqDUzqu0myt7jtT2ZjPM0xEijKGo3B7JEQmmK9Qq8F7uXp9OWbJyGrXe-9MJXfObpXbS4zkoXs5di9j9_Kne3mQ6Cj5CMc-3d-__7G-Adxrg_E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2348645230</pqid></control><display><type>article</type><title>Distinguishing changes in the Hadley circulation edge</title><source>SpringerLink Journals</source><creator>Moon, Hyejin ; Ha, Kyung-Ja</creator><creatorcontrib>Moon, Hyejin ; Ha, Kyung-Ja</creatorcontrib><description>The studies on poleward expansion of the Hadley circulation have mainly concentrated on linear trends with global warming. There is no consensus on how the edge of the Hadley circulation has been affected by the dynamical linkage to causes of change. Here, this study strives to make a robust assessment of the changes in the edge latitude of the Hadley circulation by comparing two reanalysis datasets and two theoretical models, namely the Held and Hou. J Atmos Res 37: 515-533; ( 1980 ) model (HH80) and Held ( 2000 ) model (He00). A poleward shift in both hemispheres emerged after the mid-1990s in the two reanalysis datasets, except for the Northern Hemisphere from ERA-Interim. Comparing the edge latitudes of the two reanalysis datasets, HH80 (He00) is seen to be out of phase (in-phase) in the Hadley circulation edge. He00 only shows interdecadal change regarding the poleward expansion of the Hadley circulation. We found that the dominant factors affecting change in the edge latitude of the Hadley circulation were the subtropical static stability and subtropical tropopause height. The changes in the Hadley circulation in the Northern Hemisphere (Southern Hemisphere) are associated with negative ENSO and positive AO (positive SAM).</description><identifier>ISSN: 0177-798X</identifier><identifier>EISSN: 1434-4483</identifier><identifier>DOI: 10.1007/s00704-019-03017-1</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Analysis ; Aquatic Pollution ; Atmospheric Protection/Air Quality Control/Air Pollution ; Atmospheric Sciences ; Circulation ; Climate change ; Climate science ; Climatology ; Cyclones ; Datasets ; Earth and Environmental Science ; Earth Sciences ; El Nino ; El Nino phenomena ; El Nino-Southern Oscillation event ; Global warming ; Hadley circulation ; Latitude ; Northern Hemisphere ; Original Paper ; Southern Hemisphere ; Southern Oscillation ; Static stability ; Subtropical circulation ; Tropopause ; Tropopause height ; Troposphere ; Vertical stability ; Waste Water Technology ; Water Management ; Water Pollution Control</subject><ispartof>Theoretical and applied climatology, 2020-02, Vol.139 (3-4), p.1007-1017</ispartof><rights>Springer-Verlag GmbH Austria, part of Springer Nature 2019</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Theoretical and Applied Climatology is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-25c64d34b8817f23f23b14954c7e2ad153d90eb143cc7fc31a16b1095ab388d83</citedby><cites>FETCH-LOGICAL-c392t-25c64d34b8817f23f23b14954c7e2ad153d90eb143cc7fc31a16b1095ab388d83</cites><orcidid>0000-0003-1753-9304</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00704-019-03017-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00704-019-03017-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Moon, Hyejin</creatorcontrib><creatorcontrib>Ha, Kyung-Ja</creatorcontrib><title>Distinguishing changes in the Hadley circulation edge</title><title>Theoretical and applied climatology</title><addtitle>Theor Appl Climatol</addtitle><description>The studies on poleward expansion of the Hadley circulation have mainly concentrated on linear trends with global warming. There is no consensus on how the edge of the Hadley circulation has been affected by the dynamical linkage to causes of change. Here, this study strives to make a robust assessment of the changes in the edge latitude of the Hadley circulation by comparing two reanalysis datasets and two theoretical models, namely the Held and Hou. J Atmos Res 37: 515-533; ( 1980 ) model (HH80) and Held ( 2000 ) model (He00). A poleward shift in both hemispheres emerged after the mid-1990s in the two reanalysis datasets, except for the Northern Hemisphere from ERA-Interim. Comparing the edge latitudes of the two reanalysis datasets, HH80 (He00) is seen to be out of phase (in-phase) in the Hadley circulation edge. He00 only shows interdecadal change regarding the poleward expansion of the Hadley circulation. We found that the dominant factors affecting change in the edge latitude of the Hadley circulation were the subtropical static stability and subtropical tropopause height. The changes in the Hadley circulation in the Northern Hemisphere (Southern Hemisphere) are associated with negative ENSO and positive AO (positive SAM).</description><subject>Analysis</subject><subject>Aquatic Pollution</subject><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Atmospheric Sciences</subject><subject>Circulation</subject><subject>Climate change</subject><subject>Climate science</subject><subject>Climatology</subject><subject>Cyclones</subject><subject>Datasets</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>El Nino</subject><subject>El Nino phenomena</subject><subject>El Nino-Southern Oscillation event</subject><subject>Global warming</subject><subject>Hadley circulation</subject><subject>Latitude</subject><subject>Northern Hemisphere</subject><subject>Original Paper</subject><subject>Southern Hemisphere</subject><subject>Southern Oscillation</subject><subject>Static stability</subject><subject>Subtropical circulation</subject><subject>Tropopause</subject><subject>Tropopause height</subject><subject>Troposphere</subject><subject>Vertical stability</subject><subject>Waste Water Technology</subject><subject>Water Management</subject><subject>Water Pollution Control</subject><issn>0177-798X</issn><issn>1434-4483</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kFtLwzAYhoMoOKd_wKuCV15k5tQmvRzzsMFA8ADehTRN24yunUkK7t-bWUF2Iwn54OV5kvACcI3RDCPE73w8EIMI5xBRhDnEJ2CCGWWQMUFPwSRmHPJcfJyDC-83CCGSZXwC0nvrg-3qwfomjkQ3qquNT2yXhMYkS1W2Zp9o6_TQqmD7LjFlbS7BWaVab65-5xS8Pz68LZZw_fy0WszXUNOcBEhSnbGSskIIzCtC4y4wy1OmuSGqxCktc2RiRLXmlaZY4azAKE9VQYUoBZ2Cm_Henes_B-OD3PSD6-KTklAmMpYSiiI1G6latUbaruqDUzqu0myt7jtT2ZjPM0xEijKGo3B7JEQmmK9Qq8F7uXp9OWbJyGrXe-9MJXfObpXbS4zkoXs5di9j9_Kne3mQ6Cj5CMc-3d-__7G-Adxrg_E</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Moon, Hyejin</creator><creator>Ha, Kyung-Ja</creator><general>Springer Vienna</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QH</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-1753-9304</orcidid></search><sort><creationdate>20200201</creationdate><title>Distinguishing changes in the Hadley circulation edge</title><author>Moon, Hyejin ; Ha, Kyung-Ja</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-25c64d34b8817f23f23b14954c7e2ad153d90eb143cc7fc31a16b1095ab388d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analysis</topic><topic>Aquatic Pollution</topic><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Atmospheric Sciences</topic><topic>Circulation</topic><topic>Climate change</topic><topic>Climate science</topic><topic>Climatology</topic><topic>Cyclones</topic><topic>Datasets</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>El Nino</topic><topic>El Nino phenomena</topic><topic>El Nino-Southern Oscillation event</topic><topic>Global warming</topic><topic>Hadley circulation</topic><topic>Latitude</topic><topic>Northern Hemisphere</topic><topic>Original Paper</topic><topic>Southern Hemisphere</topic><topic>Southern Oscillation</topic><topic>Static stability</topic><topic>Subtropical circulation</topic><topic>Tropopause</topic><topic>Tropopause height</topic><topic>Troposphere</topic><topic>Vertical stability</topic><topic>Waste Water Technology</topic><topic>Water Management</topic><topic>Water Pollution Control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moon, Hyejin</creatorcontrib><creatorcontrib>Ha, Kyung-Ja</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Theoretical and applied climatology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moon, Hyejin</au><au>Ha, Kyung-Ja</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distinguishing changes in the Hadley circulation edge</atitle><jtitle>Theoretical and applied climatology</jtitle><stitle>Theor Appl Climatol</stitle><date>2020-02-01</date><risdate>2020</risdate><volume>139</volume><issue>3-4</issue><spage>1007</spage><epage>1017</epage><pages>1007-1017</pages><issn>0177-798X</issn><eissn>1434-4483</eissn><abstract>The studies on poleward expansion of the Hadley circulation have mainly concentrated on linear trends with global warming. There is no consensus on how the edge of the Hadley circulation has been affected by the dynamical linkage to causes of change. Here, this study strives to make a robust assessment of the changes in the edge latitude of the Hadley circulation by comparing two reanalysis datasets and two theoretical models, namely the Held and Hou. J Atmos Res 37: 515-533; ( 1980 ) model (HH80) and Held ( 2000 ) model (He00). A poleward shift in both hemispheres emerged after the mid-1990s in the two reanalysis datasets, except for the Northern Hemisphere from ERA-Interim. Comparing the edge latitudes of the two reanalysis datasets, HH80 (He00) is seen to be out of phase (in-phase) in the Hadley circulation edge. He00 only shows interdecadal change regarding the poleward expansion of the Hadley circulation. We found that the dominant factors affecting change in the edge latitude of the Hadley circulation were the subtropical static stability and subtropical tropopause height. The changes in the Hadley circulation in the Northern Hemisphere (Southern Hemisphere) are associated with negative ENSO and positive AO (positive SAM).</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00704-019-03017-1</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-1753-9304</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0177-798X
ispartof Theoretical and applied climatology, 2020-02, Vol.139 (3-4), p.1007-1017
issn 0177-798X
1434-4483
language eng
recordid cdi_proquest_journals_2348645230
source SpringerLink Journals
subjects Analysis
Aquatic Pollution
Atmospheric Protection/Air Quality Control/Air Pollution
Atmospheric Sciences
Circulation
Climate change
Climate science
Climatology
Cyclones
Datasets
Earth and Environmental Science
Earth Sciences
El Nino
El Nino phenomena
El Nino-Southern Oscillation event
Global warming
Hadley circulation
Latitude
Northern Hemisphere
Original Paper
Southern Hemisphere
Southern Oscillation
Static stability
Subtropical circulation
Tropopause
Tropopause height
Troposphere
Vertical stability
Waste Water Technology
Water Management
Water Pollution Control
title Distinguishing changes in the Hadley circulation edge
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T10%3A24%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distinguishing%20changes%20in%20the%20Hadley%20circulation%20edge&rft.jtitle=Theoretical%20and%20applied%20climatology&rft.au=Moon,%20Hyejin&rft.date=2020-02-01&rft.volume=139&rft.issue=3-4&rft.spage=1007&rft.epage=1017&rft.pages=1007-1017&rft.issn=0177-798X&rft.eissn=1434-4483&rft_id=info:doi/10.1007/s00704-019-03017-1&rft_dat=%3Cgale_proqu%3EA612850641%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2348645230&rft_id=info:pmid/&rft_galeid=A612850641&rfr_iscdi=true