Distinguishing changes in the Hadley circulation edge
The studies on poleward expansion of the Hadley circulation have mainly concentrated on linear trends with global warming. There is no consensus on how the edge of the Hadley circulation has been affected by the dynamical linkage to causes of change. Here, this study strives to make a robust assessm...
Gespeichert in:
Veröffentlicht in: | Theoretical and applied climatology 2020-02, Vol.139 (3-4), p.1007-1017 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1017 |
---|---|
container_issue | 3-4 |
container_start_page | 1007 |
container_title | Theoretical and applied climatology |
container_volume | 139 |
creator | Moon, Hyejin Ha, Kyung-Ja |
description | The studies on poleward expansion of the Hadley circulation have mainly concentrated on linear trends with global warming. There is no consensus on how the edge of the Hadley circulation has been affected by the dynamical linkage to causes of change. Here, this study strives to make a robust assessment of the changes in the edge latitude of the Hadley circulation by comparing two reanalysis datasets and two theoretical models, namely the Held and Hou. J Atmos Res 37: 515-533; (
1980
) model (HH80) and Held (
2000
) model (He00). A poleward shift in both hemispheres emerged after the mid-1990s in the two reanalysis datasets, except for the Northern Hemisphere from ERA-Interim. Comparing the edge latitudes of the two reanalysis datasets, HH80 (He00) is seen to be out of phase (in-phase) in the Hadley circulation edge. He00 only shows interdecadal change regarding the poleward expansion of the Hadley circulation. We found that the dominant factors affecting change in the edge latitude of the Hadley circulation were the subtropical static stability and subtropical tropopause height. The changes in the Hadley circulation in the Northern Hemisphere (Southern Hemisphere) are associated with negative ENSO and positive AO (positive SAM). |
doi_str_mv | 10.1007/s00704-019-03017-1 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2348645230</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A612850641</galeid><sourcerecordid>A612850641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-25c64d34b8817f23f23b14954c7e2ad153d90eb143cc7fc31a16b1095ab388d83</originalsourceid><addsrcrecordid>eNp9kFtLwzAYhoMoOKd_wKuCV15k5tQmvRzzsMFA8ADehTRN24yunUkK7t-bWUF2Iwn54OV5kvACcI3RDCPE73w8EIMI5xBRhDnEJ2CCGWWQMUFPwSRmHPJcfJyDC-83CCGSZXwC0nvrg-3qwfomjkQ3qquNT2yXhMYkS1W2Zp9o6_TQqmD7LjFlbS7BWaVab65-5xS8Pz68LZZw_fy0WszXUNOcBEhSnbGSskIIzCtC4y4wy1OmuSGqxCktc2RiRLXmlaZY4azAKE9VQYUoBZ2Cm_Henes_B-OD3PSD6-KTklAmMpYSiiI1G6latUbaruqDUzqu0myt7jtT2ZjPM0xEijKGo3B7JEQmmK9Qq8F7uXp9OWbJyGrXe-9MJXfObpXbS4zkoXs5di9j9_Kne3mQ6Cj5CMc-3d-__7G-Adxrg_E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2348645230</pqid></control><display><type>article</type><title>Distinguishing changes in the Hadley circulation edge</title><source>SpringerLink Journals</source><creator>Moon, Hyejin ; Ha, Kyung-Ja</creator><creatorcontrib>Moon, Hyejin ; Ha, Kyung-Ja</creatorcontrib><description>The studies on poleward expansion of the Hadley circulation have mainly concentrated on linear trends with global warming. There is no consensus on how the edge of the Hadley circulation has been affected by the dynamical linkage to causes of change. Here, this study strives to make a robust assessment of the changes in the edge latitude of the Hadley circulation by comparing two reanalysis datasets and two theoretical models, namely the Held and Hou. J Atmos Res 37: 515-533; (
1980
) model (HH80) and Held (
2000
) model (He00). A poleward shift in both hemispheres emerged after the mid-1990s in the two reanalysis datasets, except for the Northern Hemisphere from ERA-Interim. Comparing the edge latitudes of the two reanalysis datasets, HH80 (He00) is seen to be out of phase (in-phase) in the Hadley circulation edge. He00 only shows interdecadal change regarding the poleward expansion of the Hadley circulation. We found that the dominant factors affecting change in the edge latitude of the Hadley circulation were the subtropical static stability and subtropical tropopause height. The changes in the Hadley circulation in the Northern Hemisphere (Southern Hemisphere) are associated with negative ENSO and positive AO (positive SAM).</description><identifier>ISSN: 0177-798X</identifier><identifier>EISSN: 1434-4483</identifier><identifier>DOI: 10.1007/s00704-019-03017-1</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Analysis ; Aquatic Pollution ; Atmospheric Protection/Air Quality Control/Air Pollution ; Atmospheric Sciences ; Circulation ; Climate change ; Climate science ; Climatology ; Cyclones ; Datasets ; Earth and Environmental Science ; Earth Sciences ; El Nino ; El Nino phenomena ; El Nino-Southern Oscillation event ; Global warming ; Hadley circulation ; Latitude ; Northern Hemisphere ; Original Paper ; Southern Hemisphere ; Southern Oscillation ; Static stability ; Subtropical circulation ; Tropopause ; Tropopause height ; Troposphere ; Vertical stability ; Waste Water Technology ; Water Management ; Water Pollution Control</subject><ispartof>Theoretical and applied climatology, 2020-02, Vol.139 (3-4), p.1007-1017</ispartof><rights>Springer-Verlag GmbH Austria, part of Springer Nature 2019</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Theoretical and Applied Climatology is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-25c64d34b8817f23f23b14954c7e2ad153d90eb143cc7fc31a16b1095ab388d83</citedby><cites>FETCH-LOGICAL-c392t-25c64d34b8817f23f23b14954c7e2ad153d90eb143cc7fc31a16b1095ab388d83</cites><orcidid>0000-0003-1753-9304</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00704-019-03017-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00704-019-03017-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Moon, Hyejin</creatorcontrib><creatorcontrib>Ha, Kyung-Ja</creatorcontrib><title>Distinguishing changes in the Hadley circulation edge</title><title>Theoretical and applied climatology</title><addtitle>Theor Appl Climatol</addtitle><description>The studies on poleward expansion of the Hadley circulation have mainly concentrated on linear trends with global warming. There is no consensus on how the edge of the Hadley circulation has been affected by the dynamical linkage to causes of change. Here, this study strives to make a robust assessment of the changes in the edge latitude of the Hadley circulation by comparing two reanalysis datasets and two theoretical models, namely the Held and Hou. J Atmos Res 37: 515-533; (
1980
) model (HH80) and Held (
2000
) model (He00). A poleward shift in both hemispheres emerged after the mid-1990s in the two reanalysis datasets, except for the Northern Hemisphere from ERA-Interim. Comparing the edge latitudes of the two reanalysis datasets, HH80 (He00) is seen to be out of phase (in-phase) in the Hadley circulation edge. He00 only shows interdecadal change regarding the poleward expansion of the Hadley circulation. We found that the dominant factors affecting change in the edge latitude of the Hadley circulation were the subtropical static stability and subtropical tropopause height. The changes in the Hadley circulation in the Northern Hemisphere (Southern Hemisphere) are associated with negative ENSO and positive AO (positive SAM).</description><subject>Analysis</subject><subject>Aquatic Pollution</subject><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Atmospheric Sciences</subject><subject>Circulation</subject><subject>Climate change</subject><subject>Climate science</subject><subject>Climatology</subject><subject>Cyclones</subject><subject>Datasets</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>El Nino</subject><subject>El Nino phenomena</subject><subject>El Nino-Southern Oscillation event</subject><subject>Global warming</subject><subject>Hadley circulation</subject><subject>Latitude</subject><subject>Northern Hemisphere</subject><subject>Original Paper</subject><subject>Southern Hemisphere</subject><subject>Southern Oscillation</subject><subject>Static stability</subject><subject>Subtropical circulation</subject><subject>Tropopause</subject><subject>Tropopause height</subject><subject>Troposphere</subject><subject>Vertical stability</subject><subject>Waste Water Technology</subject><subject>Water Management</subject><subject>Water Pollution Control</subject><issn>0177-798X</issn><issn>1434-4483</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kFtLwzAYhoMoOKd_wKuCV15k5tQmvRzzsMFA8ADehTRN24yunUkK7t-bWUF2Iwn54OV5kvACcI3RDCPE73w8EIMI5xBRhDnEJ2CCGWWQMUFPwSRmHPJcfJyDC-83CCGSZXwC0nvrg-3qwfomjkQ3qquNT2yXhMYkS1W2Zp9o6_TQqmD7LjFlbS7BWaVab65-5xS8Pz68LZZw_fy0WszXUNOcBEhSnbGSskIIzCtC4y4wy1OmuSGqxCktc2RiRLXmlaZY4azAKE9VQYUoBZ2Cm_Henes_B-OD3PSD6-KTklAmMpYSiiI1G6latUbaruqDUzqu0myt7jtT2ZjPM0xEijKGo3B7JEQmmK9Qq8F7uXp9OWbJyGrXe-9MJXfObpXbS4zkoXs5di9j9_Kne3mQ6Cj5CMc-3d-__7G-Adxrg_E</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Moon, Hyejin</creator><creator>Ha, Kyung-Ja</creator><general>Springer Vienna</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QH</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-1753-9304</orcidid></search><sort><creationdate>20200201</creationdate><title>Distinguishing changes in the Hadley circulation edge</title><author>Moon, Hyejin ; Ha, Kyung-Ja</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-25c64d34b8817f23f23b14954c7e2ad153d90eb143cc7fc31a16b1095ab388d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analysis</topic><topic>Aquatic Pollution</topic><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Atmospheric Sciences</topic><topic>Circulation</topic><topic>Climate change</topic><topic>Climate science</topic><topic>Climatology</topic><topic>Cyclones</topic><topic>Datasets</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>El Nino</topic><topic>El Nino phenomena</topic><topic>El Nino-Southern Oscillation event</topic><topic>Global warming</topic><topic>Hadley circulation</topic><topic>Latitude</topic><topic>Northern Hemisphere</topic><topic>Original Paper</topic><topic>Southern Hemisphere</topic><topic>Southern Oscillation</topic><topic>Static stability</topic><topic>Subtropical circulation</topic><topic>Tropopause</topic><topic>Tropopause height</topic><topic>Troposphere</topic><topic>Vertical stability</topic><topic>Waste Water Technology</topic><topic>Water Management</topic><topic>Water Pollution Control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moon, Hyejin</creatorcontrib><creatorcontrib>Ha, Kyung-Ja</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Theoretical and applied climatology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moon, Hyejin</au><au>Ha, Kyung-Ja</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distinguishing changes in the Hadley circulation edge</atitle><jtitle>Theoretical and applied climatology</jtitle><stitle>Theor Appl Climatol</stitle><date>2020-02-01</date><risdate>2020</risdate><volume>139</volume><issue>3-4</issue><spage>1007</spage><epage>1017</epage><pages>1007-1017</pages><issn>0177-798X</issn><eissn>1434-4483</eissn><abstract>The studies on poleward expansion of the Hadley circulation have mainly concentrated on linear trends with global warming. There is no consensus on how the edge of the Hadley circulation has been affected by the dynamical linkage to causes of change. Here, this study strives to make a robust assessment of the changes in the edge latitude of the Hadley circulation by comparing two reanalysis datasets and two theoretical models, namely the Held and Hou. J Atmos Res 37: 515-533; (
1980
) model (HH80) and Held (
2000
) model (He00). A poleward shift in both hemispheres emerged after the mid-1990s in the two reanalysis datasets, except for the Northern Hemisphere from ERA-Interim. Comparing the edge latitudes of the two reanalysis datasets, HH80 (He00) is seen to be out of phase (in-phase) in the Hadley circulation edge. He00 only shows interdecadal change regarding the poleward expansion of the Hadley circulation. We found that the dominant factors affecting change in the edge latitude of the Hadley circulation were the subtropical static stability and subtropical tropopause height. The changes in the Hadley circulation in the Northern Hemisphere (Southern Hemisphere) are associated with negative ENSO and positive AO (positive SAM).</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00704-019-03017-1</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-1753-9304</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0177-798X |
ispartof | Theoretical and applied climatology, 2020-02, Vol.139 (3-4), p.1007-1017 |
issn | 0177-798X 1434-4483 |
language | eng |
recordid | cdi_proquest_journals_2348645230 |
source | SpringerLink Journals |
subjects | Analysis Aquatic Pollution Atmospheric Protection/Air Quality Control/Air Pollution Atmospheric Sciences Circulation Climate change Climate science Climatology Cyclones Datasets Earth and Environmental Science Earth Sciences El Nino El Nino phenomena El Nino-Southern Oscillation event Global warming Hadley circulation Latitude Northern Hemisphere Original Paper Southern Hemisphere Southern Oscillation Static stability Subtropical circulation Tropopause Tropopause height Troposphere Vertical stability Waste Water Technology Water Management Water Pollution Control |
title | Distinguishing changes in the Hadley circulation edge |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T10%3A24%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distinguishing%20changes%20in%20the%20Hadley%20circulation%20edge&rft.jtitle=Theoretical%20and%20applied%20climatology&rft.au=Moon,%20Hyejin&rft.date=2020-02-01&rft.volume=139&rft.issue=3-4&rft.spage=1007&rft.epage=1017&rft.pages=1007-1017&rft.issn=0177-798X&rft.eissn=1434-4483&rft_id=info:doi/10.1007/s00704-019-03017-1&rft_dat=%3Cgale_proqu%3EA612850641%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2348645230&rft_id=info:pmid/&rft_galeid=A612850641&rfr_iscdi=true |