Improvement of daily precipitation estimations using PRISM with inverse-distance weighting
Improved daily precipitation estimations were attempted using the parameter-elevation regressions on a parameter-elevation regression on independent slopes model (PRISM) with inverse-distance weighting (IDW) and a precipitation-masking algorithm for precipitation areas. The PRISM (PRISM_ORG) suffers...
Gespeichert in:
Veröffentlicht in: | Theoretical and applied climatology 2020-02, Vol.139 (3-4), p.923-934 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 934 |
---|---|
container_issue | 3-4 |
container_start_page | 923 |
container_title | Theoretical and applied climatology |
container_volume | 139 |
creator | Jeong, Ha-Gyu Ahn, Joong-Bae Lee, Joonlee Shim, Kyo-Moon Jung, Myung-Pyo |
description | Improved daily precipitation estimations were attempted using the parameter-elevation regressions on a parameter-elevation regression on independent slopes model (PRISM) with inverse-distance weighting (IDW) and a precipitation-masking algorithm for precipitation areas. The PRISM (PRISM_ORG) suffers two overestimation problems when the daily precipitation is estimated: overestimation of the precipitation intensity in mountainous regions and overestimation of the local precipitation areas. In order to solve the problem of overestimating the precipitation intensity, we used the IDW technique that employs the same input stations as those used in the PRISM regression (PRISM_IDW). A precipitation-masking algorithm that selectively masks the precipitation estimation grid points was additionally applied to the PRISM_IDW results (PRISM_MSK). For 6 months from March to August 2012, daily precipitation data were produced in a horizontal resolution of 1 km based on the above two experiments and PRISM_ORG. Afterwards, each experiment was evaluated for improvements. The monthly root mean squared errors (RMSEs) of PRISM_IDW and PRISM_MSK were reduced by 0.83 mm/day and 0.86 mm/day, respectively, compared to PRISM_ORG. |
doi_str_mv | 10.1007/s00704-019-03012-6 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2348635187</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A612850659</galeid><sourcerecordid>A612850659</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-96356fd474fdb6d405dc51dd680d8bdd0dc0ec2785c1e330fc749141d2ccfd3a3</originalsourceid><addsrcrecordid>eNp9kU1rHSEUhiU0kNs0f6ArIassTI-jozPLENr0QkpLPiB0IxM9Tgz3OjfqTZp_X5MphGyKoCLPczz6EvKZwzEH0F9ynUAy4D0DAbxhaocsuBSSSdmJD2QBXGum--5mj3zM-R4AGqX0gvxerjdpesQ1xkInT90QVs90k9CGTShDCVOkmEtYv24z3eYQR_rrYnn5gz6FckdDfMSUkbmQyxAt0icM412p1Cey64dVxoN_6z65_vb16vQ7O_95tjw9OWdWClVYr0SrvJNaenernITW2ZY7pzpw3a1z4CygbXTXWo5CgLda9lxy11jrnRjEPjmc69aHPGxrs-Z-2qZYrzSNkF0tzztdqeOZGocVmhD9VNJg63C4DnaK6EM9P1G86VpQbV-Fo3dCZQr-KeOwzdksLy_es83M2jTlnNCbTapflp4NB_MSkJkDMjUg8xqQUVUSs5QrHEdMb33_x_oLcceTxQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2348635187</pqid></control><display><type>article</type><title>Improvement of daily precipitation estimations using PRISM with inverse-distance weighting</title><source>SpringerLink Journals</source><creator>Jeong, Ha-Gyu ; Ahn, Joong-Bae ; Lee, Joonlee ; Shim, Kyo-Moon ; Jung, Myung-Pyo</creator><creatorcontrib>Jeong, Ha-Gyu ; Ahn, Joong-Bae ; Lee, Joonlee ; Shim, Kyo-Moon ; Jung, Myung-Pyo</creatorcontrib><description>Improved daily precipitation estimations were attempted using the parameter-elevation regressions on a parameter-elevation regression on independent slopes model (PRISM) with inverse-distance weighting (IDW) and a precipitation-masking algorithm for precipitation areas. The PRISM (PRISM_ORG) suffers two overestimation problems when the daily precipitation is estimated: overestimation of the precipitation intensity in mountainous regions and overestimation of the local precipitation areas. In order to solve the problem of overestimating the precipitation intensity, we used the IDW technique that employs the same input stations as those used in the PRISM regression (PRISM_IDW). A precipitation-masking algorithm that selectively masks the precipitation estimation grid points was additionally applied to the PRISM_IDW results (PRISM_MSK). For 6 months from March to August 2012, daily precipitation data were produced in a horizontal resolution of 1 km based on the above two experiments and PRISM_ORG. Afterwards, each experiment was evaluated for improvements. The monthly root mean squared errors (RMSEs) of PRISM_IDW and PRISM_MSK were reduced by 0.83 mm/day and 0.86 mm/day, respectively, compared to PRISM_ORG.</description><identifier>ISSN: 0177-798X</identifier><identifier>EISSN: 1434-4483</identifier><identifier>DOI: 10.1007/s00704-019-03012-6</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Algorithms ; Aquatic Pollution ; Atmospheric Protection/Air Quality Control/Air Pollution ; Atmospheric Sciences ; Climate science ; Climatology ; Daily ; Daily precipitation ; Distance ; Earth and Environmental Science ; Earth Sciences ; Elevation ; Hydrologic data ; Local precipitation ; Masking ; Masks ; Mountain regions ; Original Paper ; Parameter estimation ; Precipitation ; Precipitation data ; Precipitation estimation ; Rainfall intensity ; Regression models ; Waste Water Technology ; Water Management ; Water Pollution Control ; Weighting</subject><ispartof>Theoretical and applied climatology, 2020-02, Vol.139 (3-4), p.923-934</ispartof><rights>The Author(s) 2019</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Theoretical and Applied Climatology is a copyright of Springer, (2019). All Rights Reserved. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-96356fd474fdb6d405dc51dd680d8bdd0dc0ec2785c1e330fc749141d2ccfd3a3</citedby><cites>FETCH-LOGICAL-c436t-96356fd474fdb6d405dc51dd680d8bdd0dc0ec2785c1e330fc749141d2ccfd3a3</cites><orcidid>0000-0001-6958-2801</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00704-019-03012-6$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00704-019-03012-6$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Jeong, Ha-Gyu</creatorcontrib><creatorcontrib>Ahn, Joong-Bae</creatorcontrib><creatorcontrib>Lee, Joonlee</creatorcontrib><creatorcontrib>Shim, Kyo-Moon</creatorcontrib><creatorcontrib>Jung, Myung-Pyo</creatorcontrib><title>Improvement of daily precipitation estimations using PRISM with inverse-distance weighting</title><title>Theoretical and applied climatology</title><addtitle>Theor Appl Climatol</addtitle><description>Improved daily precipitation estimations were attempted using the parameter-elevation regressions on a parameter-elevation regression on independent slopes model (PRISM) with inverse-distance weighting (IDW) and a precipitation-masking algorithm for precipitation areas. The PRISM (PRISM_ORG) suffers two overestimation problems when the daily precipitation is estimated: overestimation of the precipitation intensity in mountainous regions and overestimation of the local precipitation areas. In order to solve the problem of overestimating the precipitation intensity, we used the IDW technique that employs the same input stations as those used in the PRISM regression (PRISM_IDW). A precipitation-masking algorithm that selectively masks the precipitation estimation grid points was additionally applied to the PRISM_IDW results (PRISM_MSK). For 6 months from March to August 2012, daily precipitation data were produced in a horizontal resolution of 1 km based on the above two experiments and PRISM_ORG. Afterwards, each experiment was evaluated for improvements. The monthly root mean squared errors (RMSEs) of PRISM_IDW and PRISM_MSK were reduced by 0.83 mm/day and 0.86 mm/day, respectively, compared to PRISM_ORG.</description><subject>Algorithms</subject><subject>Aquatic Pollution</subject><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Atmospheric Sciences</subject><subject>Climate science</subject><subject>Climatology</subject><subject>Daily</subject><subject>Daily precipitation</subject><subject>Distance</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Elevation</subject><subject>Hydrologic data</subject><subject>Local precipitation</subject><subject>Masking</subject><subject>Masks</subject><subject>Mountain regions</subject><subject>Original Paper</subject><subject>Parameter estimation</subject><subject>Precipitation</subject><subject>Precipitation data</subject><subject>Precipitation estimation</subject><subject>Rainfall intensity</subject><subject>Regression models</subject><subject>Waste Water Technology</subject><subject>Water Management</subject><subject>Water Pollution Control</subject><subject>Weighting</subject><issn>0177-798X</issn><issn>1434-4483</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kU1rHSEUhiU0kNs0f6ArIassTI-jozPLENr0QkpLPiB0IxM9Tgz3OjfqTZp_X5MphGyKoCLPczz6EvKZwzEH0F9ynUAy4D0DAbxhaocsuBSSSdmJD2QBXGum--5mj3zM-R4AGqX0gvxerjdpesQ1xkInT90QVs90k9CGTShDCVOkmEtYv24z3eYQR_rrYnn5gz6FckdDfMSUkbmQyxAt0icM412p1Cey64dVxoN_6z65_vb16vQ7O_95tjw9OWdWClVYr0SrvJNaenernITW2ZY7pzpw3a1z4CygbXTXWo5CgLda9lxy11jrnRjEPjmc69aHPGxrs-Z-2qZYrzSNkF0tzztdqeOZGocVmhD9VNJg63C4DnaK6EM9P1G86VpQbV-Fo3dCZQr-KeOwzdksLy_es83M2jTlnNCbTapflp4NB_MSkJkDMjUg8xqQUVUSs5QrHEdMb33_x_oLcceTxQ</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Jeong, Ha-Gyu</creator><creator>Ahn, Joong-Bae</creator><creator>Lee, Joonlee</creator><creator>Shim, Kyo-Moon</creator><creator>Jung, Myung-Pyo</creator><general>Springer Vienna</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QH</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-6958-2801</orcidid></search><sort><creationdate>20200201</creationdate><title>Improvement of daily precipitation estimations using PRISM with inverse-distance weighting</title><author>Jeong, Ha-Gyu ; Ahn, Joong-Bae ; Lee, Joonlee ; Shim, Kyo-Moon ; Jung, Myung-Pyo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-96356fd474fdb6d405dc51dd680d8bdd0dc0ec2785c1e330fc749141d2ccfd3a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Aquatic Pollution</topic><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Atmospheric Sciences</topic><topic>Climate science</topic><topic>Climatology</topic><topic>Daily</topic><topic>Daily precipitation</topic><topic>Distance</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Elevation</topic><topic>Hydrologic data</topic><topic>Local precipitation</topic><topic>Masking</topic><topic>Masks</topic><topic>Mountain regions</topic><topic>Original Paper</topic><topic>Parameter estimation</topic><topic>Precipitation</topic><topic>Precipitation data</topic><topic>Precipitation estimation</topic><topic>Rainfall intensity</topic><topic>Regression models</topic><topic>Waste Water Technology</topic><topic>Water Management</topic><topic>Water Pollution Control</topic><topic>Weighting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jeong, Ha-Gyu</creatorcontrib><creatorcontrib>Ahn, Joong-Bae</creatorcontrib><creatorcontrib>Lee, Joonlee</creatorcontrib><creatorcontrib>Shim, Kyo-Moon</creatorcontrib><creatorcontrib>Jung, Myung-Pyo</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Theoretical and applied climatology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jeong, Ha-Gyu</au><au>Ahn, Joong-Bae</au><au>Lee, Joonlee</au><au>Shim, Kyo-Moon</au><au>Jung, Myung-Pyo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improvement of daily precipitation estimations using PRISM with inverse-distance weighting</atitle><jtitle>Theoretical and applied climatology</jtitle><stitle>Theor Appl Climatol</stitle><date>2020-02-01</date><risdate>2020</risdate><volume>139</volume><issue>3-4</issue><spage>923</spage><epage>934</epage><pages>923-934</pages><issn>0177-798X</issn><eissn>1434-4483</eissn><abstract>Improved daily precipitation estimations were attempted using the parameter-elevation regressions on a parameter-elevation regression on independent slopes model (PRISM) with inverse-distance weighting (IDW) and a precipitation-masking algorithm for precipitation areas. The PRISM (PRISM_ORG) suffers two overestimation problems when the daily precipitation is estimated: overestimation of the precipitation intensity in mountainous regions and overestimation of the local precipitation areas. In order to solve the problem of overestimating the precipitation intensity, we used the IDW technique that employs the same input stations as those used in the PRISM regression (PRISM_IDW). A precipitation-masking algorithm that selectively masks the precipitation estimation grid points was additionally applied to the PRISM_IDW results (PRISM_MSK). For 6 months from March to August 2012, daily precipitation data were produced in a horizontal resolution of 1 km based on the above two experiments and PRISM_ORG. Afterwards, each experiment was evaluated for improvements. The monthly root mean squared errors (RMSEs) of PRISM_IDW and PRISM_MSK were reduced by 0.83 mm/day and 0.86 mm/day, respectively, compared to PRISM_ORG.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00704-019-03012-6</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6958-2801</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0177-798X |
ispartof | Theoretical and applied climatology, 2020-02, Vol.139 (3-4), p.923-934 |
issn | 0177-798X 1434-4483 |
language | eng |
recordid | cdi_proquest_journals_2348635187 |
source | SpringerLink Journals |
subjects | Algorithms Aquatic Pollution Atmospheric Protection/Air Quality Control/Air Pollution Atmospheric Sciences Climate science Climatology Daily Daily precipitation Distance Earth and Environmental Science Earth Sciences Elevation Hydrologic data Local precipitation Masking Masks Mountain regions Original Paper Parameter estimation Precipitation Precipitation data Precipitation estimation Rainfall intensity Regression models Waste Water Technology Water Management Water Pollution Control Weighting |
title | Improvement of daily precipitation estimations using PRISM with inverse-distance weighting |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T00%3A35%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improvement%20of%20daily%20precipitation%20estimations%20using%20PRISM%20with%20inverse-distance%20weighting&rft.jtitle=Theoretical%20and%20applied%20climatology&rft.au=Jeong,%20Ha-Gyu&rft.date=2020-02-01&rft.volume=139&rft.issue=3-4&rft.spage=923&rft.epage=934&rft.pages=923-934&rft.issn=0177-798X&rft.eissn=1434-4483&rft_id=info:doi/10.1007/s00704-019-03012-6&rft_dat=%3Cgale_proqu%3EA612850659%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2348635187&rft_id=info:pmid/&rft_galeid=A612850659&rfr_iscdi=true |