Improvement of daily precipitation estimations using PRISM with inverse-distance weighting

Improved daily precipitation estimations were attempted using the parameter-elevation regressions on a parameter-elevation regression on independent slopes model (PRISM) with inverse-distance weighting (IDW) and a precipitation-masking algorithm for precipitation areas. The PRISM (PRISM_ORG) suffers...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical and applied climatology 2020-02, Vol.139 (3-4), p.923-934
Hauptverfasser: Jeong, Ha-Gyu, Ahn, Joong-Bae, Lee, Joonlee, Shim, Kyo-Moon, Jung, Myung-Pyo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 934
container_issue 3-4
container_start_page 923
container_title Theoretical and applied climatology
container_volume 139
creator Jeong, Ha-Gyu
Ahn, Joong-Bae
Lee, Joonlee
Shim, Kyo-Moon
Jung, Myung-Pyo
description Improved daily precipitation estimations were attempted using the parameter-elevation regressions on a parameter-elevation regression on independent slopes model (PRISM) with inverse-distance weighting (IDW) and a precipitation-masking algorithm for precipitation areas. The PRISM (PRISM_ORG) suffers two overestimation problems when the daily precipitation is estimated: overestimation of the precipitation intensity in mountainous regions and overestimation of the local precipitation areas. In order to solve the problem of overestimating the precipitation intensity, we used the IDW technique that employs the same input stations as those used in the PRISM regression (PRISM_IDW). A precipitation-masking algorithm that selectively masks the precipitation estimation grid points was additionally applied to the PRISM_IDW results (PRISM_MSK). For 6 months from March to August 2012, daily precipitation data were produced in a horizontal resolution of 1 km based on the above two experiments and PRISM_ORG. Afterwards, each experiment was evaluated for improvements. The monthly root mean squared errors (RMSEs) of PRISM_IDW and PRISM_MSK were reduced by 0.83 mm/day and 0.86 mm/day, respectively, compared to PRISM_ORG.
doi_str_mv 10.1007/s00704-019-03012-6
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2348635187</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A612850659</galeid><sourcerecordid>A612850659</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-96356fd474fdb6d405dc51dd680d8bdd0dc0ec2785c1e330fc749141d2ccfd3a3</originalsourceid><addsrcrecordid>eNp9kU1rHSEUhiU0kNs0f6ArIassTI-jozPLENr0QkpLPiB0IxM9Tgz3OjfqTZp_X5MphGyKoCLPczz6EvKZwzEH0F9ynUAy4D0DAbxhaocsuBSSSdmJD2QBXGum--5mj3zM-R4AGqX0gvxerjdpesQ1xkInT90QVs90k9CGTShDCVOkmEtYv24z3eYQR_rrYnn5gz6FckdDfMSUkbmQyxAt0icM412p1Cey64dVxoN_6z65_vb16vQ7O_95tjw9OWdWClVYr0SrvJNaenernITW2ZY7pzpw3a1z4CygbXTXWo5CgLda9lxy11jrnRjEPjmc69aHPGxrs-Z-2qZYrzSNkF0tzztdqeOZGocVmhD9VNJg63C4DnaK6EM9P1G86VpQbV-Fo3dCZQr-KeOwzdksLy_es83M2jTlnNCbTapflp4NB_MSkJkDMjUg8xqQUVUSs5QrHEdMb33_x_oLcceTxQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2348635187</pqid></control><display><type>article</type><title>Improvement of daily precipitation estimations using PRISM with inverse-distance weighting</title><source>SpringerLink Journals</source><creator>Jeong, Ha-Gyu ; Ahn, Joong-Bae ; Lee, Joonlee ; Shim, Kyo-Moon ; Jung, Myung-Pyo</creator><creatorcontrib>Jeong, Ha-Gyu ; Ahn, Joong-Bae ; Lee, Joonlee ; Shim, Kyo-Moon ; Jung, Myung-Pyo</creatorcontrib><description>Improved daily precipitation estimations were attempted using the parameter-elevation regressions on a parameter-elevation regression on independent slopes model (PRISM) with inverse-distance weighting (IDW) and a precipitation-masking algorithm for precipitation areas. The PRISM (PRISM_ORG) suffers two overestimation problems when the daily precipitation is estimated: overestimation of the precipitation intensity in mountainous regions and overestimation of the local precipitation areas. In order to solve the problem of overestimating the precipitation intensity, we used the IDW technique that employs the same input stations as those used in the PRISM regression (PRISM_IDW). A precipitation-masking algorithm that selectively masks the precipitation estimation grid points was additionally applied to the PRISM_IDW results (PRISM_MSK). For 6 months from March to August 2012, daily precipitation data were produced in a horizontal resolution of 1 km based on the above two experiments and PRISM_ORG. Afterwards, each experiment was evaluated for improvements. The monthly root mean squared errors (RMSEs) of PRISM_IDW and PRISM_MSK were reduced by 0.83 mm/day and 0.86 mm/day, respectively, compared to PRISM_ORG.</description><identifier>ISSN: 0177-798X</identifier><identifier>EISSN: 1434-4483</identifier><identifier>DOI: 10.1007/s00704-019-03012-6</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Algorithms ; Aquatic Pollution ; Atmospheric Protection/Air Quality Control/Air Pollution ; Atmospheric Sciences ; Climate science ; Climatology ; Daily ; Daily precipitation ; Distance ; Earth and Environmental Science ; Earth Sciences ; Elevation ; Hydrologic data ; Local precipitation ; Masking ; Masks ; Mountain regions ; Original Paper ; Parameter estimation ; Precipitation ; Precipitation data ; Precipitation estimation ; Rainfall intensity ; Regression models ; Waste Water Technology ; Water Management ; Water Pollution Control ; Weighting</subject><ispartof>Theoretical and applied climatology, 2020-02, Vol.139 (3-4), p.923-934</ispartof><rights>The Author(s) 2019</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Theoretical and Applied Climatology is a copyright of Springer, (2019). All Rights Reserved. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-96356fd474fdb6d405dc51dd680d8bdd0dc0ec2785c1e330fc749141d2ccfd3a3</citedby><cites>FETCH-LOGICAL-c436t-96356fd474fdb6d405dc51dd680d8bdd0dc0ec2785c1e330fc749141d2ccfd3a3</cites><orcidid>0000-0001-6958-2801</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00704-019-03012-6$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00704-019-03012-6$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Jeong, Ha-Gyu</creatorcontrib><creatorcontrib>Ahn, Joong-Bae</creatorcontrib><creatorcontrib>Lee, Joonlee</creatorcontrib><creatorcontrib>Shim, Kyo-Moon</creatorcontrib><creatorcontrib>Jung, Myung-Pyo</creatorcontrib><title>Improvement of daily precipitation estimations using PRISM with inverse-distance weighting</title><title>Theoretical and applied climatology</title><addtitle>Theor Appl Climatol</addtitle><description>Improved daily precipitation estimations were attempted using the parameter-elevation regressions on a parameter-elevation regression on independent slopes model (PRISM) with inverse-distance weighting (IDW) and a precipitation-masking algorithm for precipitation areas. The PRISM (PRISM_ORG) suffers two overestimation problems when the daily precipitation is estimated: overestimation of the precipitation intensity in mountainous regions and overestimation of the local precipitation areas. In order to solve the problem of overestimating the precipitation intensity, we used the IDW technique that employs the same input stations as those used in the PRISM regression (PRISM_IDW). A precipitation-masking algorithm that selectively masks the precipitation estimation grid points was additionally applied to the PRISM_IDW results (PRISM_MSK). For 6 months from March to August 2012, daily precipitation data were produced in a horizontal resolution of 1 km based on the above two experiments and PRISM_ORG. Afterwards, each experiment was evaluated for improvements. The monthly root mean squared errors (RMSEs) of PRISM_IDW and PRISM_MSK were reduced by 0.83 mm/day and 0.86 mm/day, respectively, compared to PRISM_ORG.</description><subject>Algorithms</subject><subject>Aquatic Pollution</subject><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Atmospheric Sciences</subject><subject>Climate science</subject><subject>Climatology</subject><subject>Daily</subject><subject>Daily precipitation</subject><subject>Distance</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Elevation</subject><subject>Hydrologic data</subject><subject>Local precipitation</subject><subject>Masking</subject><subject>Masks</subject><subject>Mountain regions</subject><subject>Original Paper</subject><subject>Parameter estimation</subject><subject>Precipitation</subject><subject>Precipitation data</subject><subject>Precipitation estimation</subject><subject>Rainfall intensity</subject><subject>Regression models</subject><subject>Waste Water Technology</subject><subject>Water Management</subject><subject>Water Pollution Control</subject><subject>Weighting</subject><issn>0177-798X</issn><issn>1434-4483</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kU1rHSEUhiU0kNs0f6ArIassTI-jozPLENr0QkpLPiB0IxM9Tgz3OjfqTZp_X5MphGyKoCLPczz6EvKZwzEH0F9ynUAy4D0DAbxhaocsuBSSSdmJD2QBXGum--5mj3zM-R4AGqX0gvxerjdpesQ1xkInT90QVs90k9CGTShDCVOkmEtYv24z3eYQR_rrYnn5gz6FckdDfMSUkbmQyxAt0icM412p1Cey64dVxoN_6z65_vb16vQ7O_95tjw9OWdWClVYr0SrvJNaenernITW2ZY7pzpw3a1z4CygbXTXWo5CgLda9lxy11jrnRjEPjmc69aHPGxrs-Z-2qZYrzSNkF0tzztdqeOZGocVmhD9VNJg63C4DnaK6EM9P1G86VpQbV-Fo3dCZQr-KeOwzdksLy_es83M2jTlnNCbTapflp4NB_MSkJkDMjUg8xqQUVUSs5QrHEdMb33_x_oLcceTxQ</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Jeong, Ha-Gyu</creator><creator>Ahn, Joong-Bae</creator><creator>Lee, Joonlee</creator><creator>Shim, Kyo-Moon</creator><creator>Jung, Myung-Pyo</creator><general>Springer Vienna</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QH</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-6958-2801</orcidid></search><sort><creationdate>20200201</creationdate><title>Improvement of daily precipitation estimations using PRISM with inverse-distance weighting</title><author>Jeong, Ha-Gyu ; Ahn, Joong-Bae ; Lee, Joonlee ; Shim, Kyo-Moon ; Jung, Myung-Pyo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-96356fd474fdb6d405dc51dd680d8bdd0dc0ec2785c1e330fc749141d2ccfd3a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Aquatic Pollution</topic><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Atmospheric Sciences</topic><topic>Climate science</topic><topic>Climatology</topic><topic>Daily</topic><topic>Daily precipitation</topic><topic>Distance</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Elevation</topic><topic>Hydrologic data</topic><topic>Local precipitation</topic><topic>Masking</topic><topic>Masks</topic><topic>Mountain regions</topic><topic>Original Paper</topic><topic>Parameter estimation</topic><topic>Precipitation</topic><topic>Precipitation data</topic><topic>Precipitation estimation</topic><topic>Rainfall intensity</topic><topic>Regression models</topic><topic>Waste Water Technology</topic><topic>Water Management</topic><topic>Water Pollution Control</topic><topic>Weighting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jeong, Ha-Gyu</creatorcontrib><creatorcontrib>Ahn, Joong-Bae</creatorcontrib><creatorcontrib>Lee, Joonlee</creatorcontrib><creatorcontrib>Shim, Kyo-Moon</creatorcontrib><creatorcontrib>Jung, Myung-Pyo</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Theoretical and applied climatology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jeong, Ha-Gyu</au><au>Ahn, Joong-Bae</au><au>Lee, Joonlee</au><au>Shim, Kyo-Moon</au><au>Jung, Myung-Pyo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improvement of daily precipitation estimations using PRISM with inverse-distance weighting</atitle><jtitle>Theoretical and applied climatology</jtitle><stitle>Theor Appl Climatol</stitle><date>2020-02-01</date><risdate>2020</risdate><volume>139</volume><issue>3-4</issue><spage>923</spage><epage>934</epage><pages>923-934</pages><issn>0177-798X</issn><eissn>1434-4483</eissn><abstract>Improved daily precipitation estimations were attempted using the parameter-elevation regressions on a parameter-elevation regression on independent slopes model (PRISM) with inverse-distance weighting (IDW) and a precipitation-masking algorithm for precipitation areas. The PRISM (PRISM_ORG) suffers two overestimation problems when the daily precipitation is estimated: overestimation of the precipitation intensity in mountainous regions and overestimation of the local precipitation areas. In order to solve the problem of overestimating the precipitation intensity, we used the IDW technique that employs the same input stations as those used in the PRISM regression (PRISM_IDW). A precipitation-masking algorithm that selectively masks the precipitation estimation grid points was additionally applied to the PRISM_IDW results (PRISM_MSK). For 6 months from March to August 2012, daily precipitation data were produced in a horizontal resolution of 1 km based on the above two experiments and PRISM_ORG. Afterwards, each experiment was evaluated for improvements. The monthly root mean squared errors (RMSEs) of PRISM_IDW and PRISM_MSK were reduced by 0.83 mm/day and 0.86 mm/day, respectively, compared to PRISM_ORG.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00704-019-03012-6</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6958-2801</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0177-798X
ispartof Theoretical and applied climatology, 2020-02, Vol.139 (3-4), p.923-934
issn 0177-798X
1434-4483
language eng
recordid cdi_proquest_journals_2348635187
source SpringerLink Journals
subjects Algorithms
Aquatic Pollution
Atmospheric Protection/Air Quality Control/Air Pollution
Atmospheric Sciences
Climate science
Climatology
Daily
Daily precipitation
Distance
Earth and Environmental Science
Earth Sciences
Elevation
Hydrologic data
Local precipitation
Masking
Masks
Mountain regions
Original Paper
Parameter estimation
Precipitation
Precipitation data
Precipitation estimation
Rainfall intensity
Regression models
Waste Water Technology
Water Management
Water Pollution Control
Weighting
title Improvement of daily precipitation estimations using PRISM with inverse-distance weighting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T00%3A35%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improvement%20of%20daily%20precipitation%20estimations%20using%20PRISM%20with%20inverse-distance%20weighting&rft.jtitle=Theoretical%20and%20applied%20climatology&rft.au=Jeong,%20Ha-Gyu&rft.date=2020-02-01&rft.volume=139&rft.issue=3-4&rft.spage=923&rft.epage=934&rft.pages=923-934&rft.issn=0177-798X&rft.eissn=1434-4483&rft_id=info:doi/10.1007/s00704-019-03012-6&rft_dat=%3Cgale_proqu%3EA612850659%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2348635187&rft_id=info:pmid/&rft_galeid=A612850659&rfr_iscdi=true