The Importance of the Ultra-alkaline Volcanic Nature of the Raw Materials to the Ductility of Roman Marine Concrete

Roman-era concrete is the iconic embodiment of long-term physicochemical resilience. We investigated the basis of this behavior across scales of observations by coupling time-lapse (4-D) tomographic imaging of macroscopic mechanical stressing with structural microscopy and chemical spectroscopy on R...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2020-01
Hauptverfasser: MacFarlane, Jackson, Vanorio, Tiziana, Monteiro, Paulo J M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator MacFarlane, Jackson
Vanorio, Tiziana
Monteiro, Paulo J M
description Roman-era concrete is the iconic embodiment of long-term physicochemical resilience. We investigated the basis of this behavior across scales of observations by coupling time-lapse (4-D) tomographic imaging of macroscopic mechanical stressing with structural microscopy and chemical spectroscopy on Roman marine concrete (RMC) from ancient harbors in Italy and Israel. Stress-strain measurements revealed that RMC creeps and exhibits a ductile deformation mode. The permeability of specimens from Italy were found to be low due to increased matrix-aggregate bonding. Structural and chemical imaging shows the presence of well-developed sulfur-rich, fibrous minerals that are intertwined and embedded in a crossbred matrix having the chemical traits of both a calcium-aluminum-silicate-hydrate and a geopolymer. This latter likely reflects the ultra-alkaline volcanic nature of the primary source materials. We hypothesize that the fine interweave of sulfur-rich fibers within this crossbred matrix enhances aggregate bonding, which altogether contributes to the durability of RMC.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2348554993</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2348554993</sourcerecordid><originalsourceid>FETCH-proquest_journals_23485549933</originalsourceid><addsrcrecordid>eNqNjMsKwjAURIMgWLT_EHBdqEmr7doHutCFqFu5hIipaaLJDeLfm4q4djVw5sz0SMI4n2RVwdiApN43eZ6z6YyVJU-IP1wl3bR36xCMkNReKEZy1OggA30DrYykJ6sFGCXoDjC4n7WHJ90CSqdAe4r2AxdBoNIKX521ty2Y6LjuZW6NcBLliPQvcSDTbw7JeLU8zNfZ3dlHkB7PjQ3OxOrMeFGVZVHXnP9nvQE0_kr_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2348554993</pqid></control><display><type>article</type><title>The Importance of the Ultra-alkaline Volcanic Nature of the Raw Materials to the Ductility of Roman Marine Concrete</title><source>Freely Accessible Journals</source><creator>MacFarlane, Jackson ; Vanorio, Tiziana ; Monteiro, Paulo J M</creator><creatorcontrib>MacFarlane, Jackson ; Vanorio, Tiziana ; Monteiro, Paulo J M</creatorcontrib><description>Roman-era concrete is the iconic embodiment of long-term physicochemical resilience. We investigated the basis of this behavior across scales of observations by coupling time-lapse (4-D) tomographic imaging of macroscopic mechanical stressing with structural microscopy and chemical spectroscopy on Roman marine concrete (RMC) from ancient harbors in Italy and Israel. Stress-strain measurements revealed that RMC creeps and exhibits a ductile deformation mode. The permeability of specimens from Italy were found to be low due to increased matrix-aggregate bonding. Structural and chemical imaging shows the presence of well-developed sulfur-rich, fibrous minerals that are intertwined and embedded in a crossbred matrix having the chemical traits of both a calcium-aluminum-silicate-hydrate and a geopolymer. This latter likely reflects the ultra-alkaline volcanic nature of the primary source materials. We hypothesize that the fine interweave of sulfur-rich fibers within this crossbred matrix enhances aggregate bonding, which altogether contributes to the durability of RMC.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Aluminum ; Calcium aluminum silicates ; Calcium silicate hydrate ; Chemical bonds ; Concrete ; Organic chemistry ; Raw materials ; Sulfur</subject><ispartof>arXiv.org, 2020-01</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>782,786</link.rule.ids></links><search><creatorcontrib>MacFarlane, Jackson</creatorcontrib><creatorcontrib>Vanorio, Tiziana</creatorcontrib><creatorcontrib>Monteiro, Paulo J M</creatorcontrib><title>The Importance of the Ultra-alkaline Volcanic Nature of the Raw Materials to the Ductility of Roman Marine Concrete</title><title>arXiv.org</title><description>Roman-era concrete is the iconic embodiment of long-term physicochemical resilience. We investigated the basis of this behavior across scales of observations by coupling time-lapse (4-D) tomographic imaging of macroscopic mechanical stressing with structural microscopy and chemical spectroscopy on Roman marine concrete (RMC) from ancient harbors in Italy and Israel. Stress-strain measurements revealed that RMC creeps and exhibits a ductile deformation mode. The permeability of specimens from Italy were found to be low due to increased matrix-aggregate bonding. Structural and chemical imaging shows the presence of well-developed sulfur-rich, fibrous minerals that are intertwined and embedded in a crossbred matrix having the chemical traits of both a calcium-aluminum-silicate-hydrate and a geopolymer. This latter likely reflects the ultra-alkaline volcanic nature of the primary source materials. We hypothesize that the fine interweave of sulfur-rich fibers within this crossbred matrix enhances aggregate bonding, which altogether contributes to the durability of RMC.</description><subject>Aluminum</subject><subject>Calcium aluminum silicates</subject><subject>Calcium silicate hydrate</subject><subject>Chemical bonds</subject><subject>Concrete</subject><subject>Organic chemistry</subject><subject>Raw materials</subject><subject>Sulfur</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjMsKwjAURIMgWLT_EHBdqEmr7doHutCFqFu5hIipaaLJDeLfm4q4djVw5sz0SMI4n2RVwdiApN43eZ6z6YyVJU-IP1wl3bR36xCMkNReKEZy1OggA30DrYykJ6sFGCXoDjC4n7WHJ90CSqdAe4r2AxdBoNIKX521ty2Y6LjuZW6NcBLliPQvcSDTbw7JeLU8zNfZ3dlHkB7PjQ3OxOrMeFGVZVHXnP9nvQE0_kr_</recordid><startdate>20200129</startdate><enddate>20200129</enddate><creator>MacFarlane, Jackson</creator><creator>Vanorio, Tiziana</creator><creator>Monteiro, Paulo J M</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200129</creationdate><title>The Importance of the Ultra-alkaline Volcanic Nature of the Raw Materials to the Ductility of Roman Marine Concrete</title><author>MacFarlane, Jackson ; Vanorio, Tiziana ; Monteiro, Paulo J M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_23485549933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aluminum</topic><topic>Calcium aluminum silicates</topic><topic>Calcium silicate hydrate</topic><topic>Chemical bonds</topic><topic>Concrete</topic><topic>Organic chemistry</topic><topic>Raw materials</topic><topic>Sulfur</topic><toplevel>online_resources</toplevel><creatorcontrib>MacFarlane, Jackson</creatorcontrib><creatorcontrib>Vanorio, Tiziana</creatorcontrib><creatorcontrib>Monteiro, Paulo J M</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MacFarlane, Jackson</au><au>Vanorio, Tiziana</au><au>Monteiro, Paulo J M</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>The Importance of the Ultra-alkaline Volcanic Nature of the Raw Materials to the Ductility of Roman Marine Concrete</atitle><jtitle>arXiv.org</jtitle><date>2020-01-29</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>Roman-era concrete is the iconic embodiment of long-term physicochemical resilience. We investigated the basis of this behavior across scales of observations by coupling time-lapse (4-D) tomographic imaging of macroscopic mechanical stressing with structural microscopy and chemical spectroscopy on Roman marine concrete (RMC) from ancient harbors in Italy and Israel. Stress-strain measurements revealed that RMC creeps and exhibits a ductile deformation mode. The permeability of specimens from Italy were found to be low due to increased matrix-aggregate bonding. Structural and chemical imaging shows the presence of well-developed sulfur-rich, fibrous minerals that are intertwined and embedded in a crossbred matrix having the chemical traits of both a calcium-aluminum-silicate-hydrate and a geopolymer. This latter likely reflects the ultra-alkaline volcanic nature of the primary source materials. We hypothesize that the fine interweave of sulfur-rich fibers within this crossbred matrix enhances aggregate bonding, which altogether contributes to the durability of RMC.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2020-01
issn 2331-8422
language eng
recordid cdi_proquest_journals_2348554993
source Freely Accessible Journals
subjects Aluminum
Calcium aluminum silicates
Calcium silicate hydrate
Chemical bonds
Concrete
Organic chemistry
Raw materials
Sulfur
title The Importance of the Ultra-alkaline Volcanic Nature of the Raw Materials to the Ductility of Roman Marine Concrete
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T01%3A40%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=The%20Importance%20of%20the%20Ultra-alkaline%20Volcanic%20Nature%20of%20the%20Raw%20Materials%20to%20the%20Ductility%20of%20Roman%20Marine%20Concrete&rft.jtitle=arXiv.org&rft.au=MacFarlane,%20Jackson&rft.date=2020-01-29&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2348554993%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2348554993&rft_id=info:pmid/&rfr_iscdi=true