Formal knowledge model for online social network forensics

Currently, examining social media networks is an integral part of most investigations. However, getting a clear view of the events relevant to the incident from a large set of data, such as social media, is a challenging task. Automation of the forensic and analysis process is the only solution to m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & security 2020-02, Vol.89, p.101675, Article 101675
Hauptverfasser: Arshad, Humaira, Jantan, Aman, Hoon, Gan Keng, Abiodun, Isaac Oludare
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 101675
container_title Computers & security
container_volume 89
creator Arshad, Humaira
Jantan, Aman
Hoon, Gan Keng
Abiodun, Isaac Oludare
description Currently, examining social media networks is an integral part of most investigations. However, getting a clear view of the events relevant to the incident from a large set of data, such as social media, is a challenging task. Automation of the forensic and analysis process is the only solution to manage large data sets and get useful information. However, automation in digital forensics is a technical issue with legal implications. The legal system accepts only those automated processes that are reproducible, explainable, and rigorously testable. Therefore, automated forensic processes must be based on formal theories, which are rare in digital forensics. This article explains a theoretical and formal knowledge model for forensic automation on online social networks. This model consists of an event-based knowledge model, which provides theoretical concepts that can assist in the construction and interpretation of the events related to the incident under investigation. The proposed model is implemented through an ontology to provide semantically rich and formal representation to the concepts. This article also describes the feasibility of legally acceptable automated analysis operators, based on a formal theory, for online social network forensics.
doi_str_mv 10.1016/j.cose.2019.101675
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2348317498</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167404819302160</els_id><sourcerecordid>2348317498</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-38f10e6208a3cda5b09c5fc7f8c37788a253ca38797c7595cb04ad6bb849f1b63</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AU8Fz6350zapeJHFVWHBi55DOp1Iut1mTboufntb69nTwJv3Zh4_Qq4ZzRhl5W2bgY-YccqqX0EWJ2TBlORpyak6JYtJS3Oaq3NyEWNLKZOlUgtyt_ZhZ7pk2_tjh80HJjvfYJdYHxLfd67HJHpwo6PH4ejDdtpgHx3ES3JmTRfx6m8uyfv68W31nG5en15WD5sUBFdDKpRlFKcaRkBjippWUFiQVoGQUinDCwFGKFlJkEVVQE1z05R1rfLKsroUS3Iz390H_3nAOOjWH0I_vtRc5EowmVdqdPHZBcHHGNDqfXA7E741o3pCols9MdITIz0zGkP3cwjH_l8Og47gsAdsXEAYdOPdf_EfpdFvLA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2348317498</pqid></control><display><type>article</type><title>Formal knowledge model for online social network forensics</title><source>Access via ScienceDirect (Elsevier)</source><creator>Arshad, Humaira ; Jantan, Aman ; Hoon, Gan Keng ; Abiodun, Isaac Oludare</creator><creatorcontrib>Arshad, Humaira ; Jantan, Aman ; Hoon, Gan Keng ; Abiodun, Isaac Oludare</creatorcontrib><description>Currently, examining social media networks is an integral part of most investigations. However, getting a clear view of the events relevant to the incident from a large set of data, such as social media, is a challenging task. Automation of the forensic and analysis process is the only solution to manage large data sets and get useful information. However, automation in digital forensics is a technical issue with legal implications. The legal system accepts only those automated processes that are reproducible, explainable, and rigorously testable. Therefore, automated forensic processes must be based on formal theories, which are rare in digital forensics. This article explains a theoretical and formal knowledge model for forensic automation on online social networks. This model consists of an event-based knowledge model, which provides theoretical concepts that can assist in the construction and interpretation of the events related to the incident under investigation. The proposed model is implemented through an ontology to provide semantically rich and formal representation to the concepts. This article also describes the feasibility of legally acceptable automated analysis operators, based on a formal theory, for online social network forensics.</description><identifier>ISSN: 0167-4048</identifier><identifier>EISSN: 1872-6208</identifier><identifier>DOI: 10.1016/j.cose.2019.101675</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Automation ; Computer forensics ; Digital media ; Forensic automation ; Forensic computing ; Forensic ontology ; Forensic sciences ; Formal model ; Knowledge model ; Knowledge representation ; Online social network forensics ; Operators (mathematics) ; Social networks</subject><ispartof>Computers &amp; security, 2020-02, Vol.89, p.101675, Article 101675</ispartof><rights>2019</rights><rights>Copyright Elsevier Sequoia S.A. Feb 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-38f10e6208a3cda5b09c5fc7f8c37788a253ca38797c7595cb04ad6bb849f1b63</citedby><cites>FETCH-LOGICAL-c328t-38f10e6208a3cda5b09c5fc7f8c37788a253ca38797c7595cb04ad6bb849f1b63</cites><orcidid>0000-0003-3615-6202</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cose.2019.101675$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Arshad, Humaira</creatorcontrib><creatorcontrib>Jantan, Aman</creatorcontrib><creatorcontrib>Hoon, Gan Keng</creatorcontrib><creatorcontrib>Abiodun, Isaac Oludare</creatorcontrib><title>Formal knowledge model for online social network forensics</title><title>Computers &amp; security</title><description>Currently, examining social media networks is an integral part of most investigations. However, getting a clear view of the events relevant to the incident from a large set of data, such as social media, is a challenging task. Automation of the forensic and analysis process is the only solution to manage large data sets and get useful information. However, automation in digital forensics is a technical issue with legal implications. The legal system accepts only those automated processes that are reproducible, explainable, and rigorously testable. Therefore, automated forensic processes must be based on formal theories, which are rare in digital forensics. This article explains a theoretical and formal knowledge model for forensic automation on online social networks. This model consists of an event-based knowledge model, which provides theoretical concepts that can assist in the construction and interpretation of the events related to the incident under investigation. The proposed model is implemented through an ontology to provide semantically rich and formal representation to the concepts. This article also describes the feasibility of legally acceptable automated analysis operators, based on a formal theory, for online social network forensics.</description><subject>Automation</subject><subject>Computer forensics</subject><subject>Digital media</subject><subject>Forensic automation</subject><subject>Forensic computing</subject><subject>Forensic ontology</subject><subject>Forensic sciences</subject><subject>Formal model</subject><subject>Knowledge model</subject><subject>Knowledge representation</subject><subject>Online social network forensics</subject><subject>Operators (mathematics)</subject><subject>Social networks</subject><issn>0167-4048</issn><issn>1872-6208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-AU8Fz6350zapeJHFVWHBi55DOp1Iut1mTboufntb69nTwJv3Zh4_Qq4ZzRhl5W2bgY-YccqqX0EWJ2TBlORpyak6JYtJS3Oaq3NyEWNLKZOlUgtyt_ZhZ7pk2_tjh80HJjvfYJdYHxLfd67HJHpwo6PH4ejDdtpgHx3ES3JmTRfx6m8uyfv68W31nG5en15WD5sUBFdDKpRlFKcaRkBjippWUFiQVoGQUinDCwFGKFlJkEVVQE1z05R1rfLKsroUS3Iz390H_3nAOOjWH0I_vtRc5EowmVdqdPHZBcHHGNDqfXA7E741o3pCols9MdITIz0zGkP3cwjH_l8Og47gsAdsXEAYdOPdf_EfpdFvLA</recordid><startdate>202002</startdate><enddate>202002</enddate><creator>Arshad, Humaira</creator><creator>Jantan, Aman</creator><creator>Hoon, Gan Keng</creator><creator>Abiodun, Isaac Oludare</creator><general>Elsevier Ltd</general><general>Elsevier Sequoia S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>K7.</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3615-6202</orcidid></search><sort><creationdate>202002</creationdate><title>Formal knowledge model for online social network forensics</title><author>Arshad, Humaira ; Jantan, Aman ; Hoon, Gan Keng ; Abiodun, Isaac Oludare</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-38f10e6208a3cda5b09c5fc7f8c37788a253ca38797c7595cb04ad6bb849f1b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Automation</topic><topic>Computer forensics</topic><topic>Digital media</topic><topic>Forensic automation</topic><topic>Forensic computing</topic><topic>Forensic ontology</topic><topic>Forensic sciences</topic><topic>Formal model</topic><topic>Knowledge model</topic><topic>Knowledge representation</topic><topic>Online social network forensics</topic><topic>Operators (mathematics)</topic><topic>Social networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arshad, Humaira</creatorcontrib><creatorcontrib>Jantan, Aman</creatorcontrib><creatorcontrib>Hoon, Gan Keng</creatorcontrib><creatorcontrib>Abiodun, Isaac Oludare</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Criminal Justice (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; security</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arshad, Humaira</au><au>Jantan, Aman</au><au>Hoon, Gan Keng</au><au>Abiodun, Isaac Oludare</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Formal knowledge model for online social network forensics</atitle><jtitle>Computers &amp; security</jtitle><date>2020-02</date><risdate>2020</risdate><volume>89</volume><spage>101675</spage><pages>101675-</pages><artnum>101675</artnum><issn>0167-4048</issn><eissn>1872-6208</eissn><abstract>Currently, examining social media networks is an integral part of most investigations. However, getting a clear view of the events relevant to the incident from a large set of data, such as social media, is a challenging task. Automation of the forensic and analysis process is the only solution to manage large data sets and get useful information. However, automation in digital forensics is a technical issue with legal implications. The legal system accepts only those automated processes that are reproducible, explainable, and rigorously testable. Therefore, automated forensic processes must be based on formal theories, which are rare in digital forensics. This article explains a theoretical and formal knowledge model for forensic automation on online social networks. This model consists of an event-based knowledge model, which provides theoretical concepts that can assist in the construction and interpretation of the events related to the incident under investigation. The proposed model is implemented through an ontology to provide semantically rich and formal representation to the concepts. This article also describes the feasibility of legally acceptable automated analysis operators, based on a formal theory, for online social network forensics.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.cose.2019.101675</doi><orcidid>https://orcid.org/0000-0003-3615-6202</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0167-4048
ispartof Computers & security, 2020-02, Vol.89, p.101675, Article 101675
issn 0167-4048
1872-6208
language eng
recordid cdi_proquest_journals_2348317498
source Access via ScienceDirect (Elsevier)
subjects Automation
Computer forensics
Digital media
Forensic automation
Forensic computing
Forensic ontology
Forensic sciences
Formal model
Knowledge model
Knowledge representation
Online social network forensics
Operators (mathematics)
Social networks
title Formal knowledge model for online social network forensics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T13%3A14%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Formal%20knowledge%20model%20for%20online%20social%20network%20forensics&rft.jtitle=Computers%20&%20security&rft.au=Arshad,%20Humaira&rft.date=2020-02&rft.volume=89&rft.spage=101675&rft.pages=101675-&rft.artnum=101675&rft.issn=0167-4048&rft.eissn=1872-6208&rft_id=info:doi/10.1016/j.cose.2019.101675&rft_dat=%3Cproquest_cross%3E2348317498%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2348317498&rft_id=info:pmid/&rft_els_id=S0167404819302160&rfr_iscdi=true