Formal knowledge model for online social network forensics
Currently, examining social media networks is an integral part of most investigations. However, getting a clear view of the events relevant to the incident from a large set of data, such as social media, is a challenging task. Automation of the forensic and analysis process is the only solution to m...
Gespeichert in:
Veröffentlicht in: | Computers & security 2020-02, Vol.89, p.101675, Article 101675 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 101675 |
container_title | Computers & security |
container_volume | 89 |
creator | Arshad, Humaira Jantan, Aman Hoon, Gan Keng Abiodun, Isaac Oludare |
description | Currently, examining social media networks is an integral part of most investigations. However, getting a clear view of the events relevant to the incident from a large set of data, such as social media, is a challenging task. Automation of the forensic and analysis process is the only solution to manage large data sets and get useful information. However, automation in digital forensics is a technical issue with legal implications. The legal system accepts only those automated processes that are reproducible, explainable, and rigorously testable. Therefore, automated forensic processes must be based on formal theories, which are rare in digital forensics. This article explains a theoretical and formal knowledge model for forensic automation on online social networks. This model consists of an event-based knowledge model, which provides theoretical concepts that can assist in the construction and interpretation of the events related to the incident under investigation. The proposed model is implemented through an ontology to provide semantically rich and formal representation to the concepts. This article also describes the feasibility of legally acceptable automated analysis operators, based on a formal theory, for online social network forensics. |
doi_str_mv | 10.1016/j.cose.2019.101675 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2348317498</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167404819302160</els_id><sourcerecordid>2348317498</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-38f10e6208a3cda5b09c5fc7f8c37788a253ca38797c7595cb04ad6bb849f1b63</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AU8Fz6350zapeJHFVWHBi55DOp1Iut1mTboufntb69nTwJv3Zh4_Qq4ZzRhl5W2bgY-YccqqX0EWJ2TBlORpyak6JYtJS3Oaq3NyEWNLKZOlUgtyt_ZhZ7pk2_tjh80HJjvfYJdYHxLfd67HJHpwo6PH4ejDdtpgHx3ES3JmTRfx6m8uyfv68W31nG5en15WD5sUBFdDKpRlFKcaRkBjippWUFiQVoGQUinDCwFGKFlJkEVVQE1z05R1rfLKsroUS3Iz390H_3nAOOjWH0I_vtRc5EowmVdqdPHZBcHHGNDqfXA7E741o3pCols9MdITIz0zGkP3cwjH_l8Og47gsAdsXEAYdOPdf_EfpdFvLA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2348317498</pqid></control><display><type>article</type><title>Formal knowledge model for online social network forensics</title><source>Access via ScienceDirect (Elsevier)</source><creator>Arshad, Humaira ; Jantan, Aman ; Hoon, Gan Keng ; Abiodun, Isaac Oludare</creator><creatorcontrib>Arshad, Humaira ; Jantan, Aman ; Hoon, Gan Keng ; Abiodun, Isaac Oludare</creatorcontrib><description>Currently, examining social media networks is an integral part of most investigations. However, getting a clear view of the events relevant to the incident from a large set of data, such as social media, is a challenging task. Automation of the forensic and analysis process is the only solution to manage large data sets and get useful information. However, automation in digital forensics is a technical issue with legal implications. The legal system accepts only those automated processes that are reproducible, explainable, and rigorously testable. Therefore, automated forensic processes must be based on formal theories, which are rare in digital forensics. This article explains a theoretical and formal knowledge model for forensic automation on online social networks. This model consists of an event-based knowledge model, which provides theoretical concepts that can assist in the construction and interpretation of the events related to the incident under investigation. The proposed model is implemented through an ontology to provide semantically rich and formal representation to the concepts. This article also describes the feasibility of legally acceptable automated analysis operators, based on a formal theory, for online social network forensics.</description><identifier>ISSN: 0167-4048</identifier><identifier>EISSN: 1872-6208</identifier><identifier>DOI: 10.1016/j.cose.2019.101675</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Automation ; Computer forensics ; Digital media ; Forensic automation ; Forensic computing ; Forensic ontology ; Forensic sciences ; Formal model ; Knowledge model ; Knowledge representation ; Online social network forensics ; Operators (mathematics) ; Social networks</subject><ispartof>Computers & security, 2020-02, Vol.89, p.101675, Article 101675</ispartof><rights>2019</rights><rights>Copyright Elsevier Sequoia S.A. Feb 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-38f10e6208a3cda5b09c5fc7f8c37788a253ca38797c7595cb04ad6bb849f1b63</citedby><cites>FETCH-LOGICAL-c328t-38f10e6208a3cda5b09c5fc7f8c37788a253ca38797c7595cb04ad6bb849f1b63</cites><orcidid>0000-0003-3615-6202</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cose.2019.101675$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Arshad, Humaira</creatorcontrib><creatorcontrib>Jantan, Aman</creatorcontrib><creatorcontrib>Hoon, Gan Keng</creatorcontrib><creatorcontrib>Abiodun, Isaac Oludare</creatorcontrib><title>Formal knowledge model for online social network forensics</title><title>Computers & security</title><description>Currently, examining social media networks is an integral part of most investigations. However, getting a clear view of the events relevant to the incident from a large set of data, such as social media, is a challenging task. Automation of the forensic and analysis process is the only solution to manage large data sets and get useful information. However, automation in digital forensics is a technical issue with legal implications. The legal system accepts only those automated processes that are reproducible, explainable, and rigorously testable. Therefore, automated forensic processes must be based on formal theories, which are rare in digital forensics. This article explains a theoretical and formal knowledge model for forensic automation on online social networks. This model consists of an event-based knowledge model, which provides theoretical concepts that can assist in the construction and interpretation of the events related to the incident under investigation. The proposed model is implemented through an ontology to provide semantically rich and formal representation to the concepts. This article also describes the feasibility of legally acceptable automated analysis operators, based on a formal theory, for online social network forensics.</description><subject>Automation</subject><subject>Computer forensics</subject><subject>Digital media</subject><subject>Forensic automation</subject><subject>Forensic computing</subject><subject>Forensic ontology</subject><subject>Forensic sciences</subject><subject>Formal model</subject><subject>Knowledge model</subject><subject>Knowledge representation</subject><subject>Online social network forensics</subject><subject>Operators (mathematics)</subject><subject>Social networks</subject><issn>0167-4048</issn><issn>1872-6208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-AU8Fz6350zapeJHFVWHBi55DOp1Iut1mTboufntb69nTwJv3Zh4_Qq4ZzRhl5W2bgY-YccqqX0EWJ2TBlORpyak6JYtJS3Oaq3NyEWNLKZOlUgtyt_ZhZ7pk2_tjh80HJjvfYJdYHxLfd67HJHpwo6PH4ejDdtpgHx3ES3JmTRfx6m8uyfv68W31nG5en15WD5sUBFdDKpRlFKcaRkBjippWUFiQVoGQUinDCwFGKFlJkEVVQE1z05R1rfLKsroUS3Iz390H_3nAOOjWH0I_vtRc5EowmVdqdPHZBcHHGNDqfXA7E741o3pCols9MdITIz0zGkP3cwjH_l8Og47gsAdsXEAYdOPdf_EfpdFvLA</recordid><startdate>202002</startdate><enddate>202002</enddate><creator>Arshad, Humaira</creator><creator>Jantan, Aman</creator><creator>Hoon, Gan Keng</creator><creator>Abiodun, Isaac Oludare</creator><general>Elsevier Ltd</general><general>Elsevier Sequoia S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>K7.</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3615-6202</orcidid></search><sort><creationdate>202002</creationdate><title>Formal knowledge model for online social network forensics</title><author>Arshad, Humaira ; Jantan, Aman ; Hoon, Gan Keng ; Abiodun, Isaac Oludare</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-38f10e6208a3cda5b09c5fc7f8c37788a253ca38797c7595cb04ad6bb849f1b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Automation</topic><topic>Computer forensics</topic><topic>Digital media</topic><topic>Forensic automation</topic><topic>Forensic computing</topic><topic>Forensic ontology</topic><topic>Forensic sciences</topic><topic>Formal model</topic><topic>Knowledge model</topic><topic>Knowledge representation</topic><topic>Online social network forensics</topic><topic>Operators (mathematics)</topic><topic>Social networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arshad, Humaira</creatorcontrib><creatorcontrib>Jantan, Aman</creatorcontrib><creatorcontrib>Hoon, Gan Keng</creatorcontrib><creatorcontrib>Abiodun, Isaac Oludare</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Criminal Justice (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers & security</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arshad, Humaira</au><au>Jantan, Aman</au><au>Hoon, Gan Keng</au><au>Abiodun, Isaac Oludare</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Formal knowledge model for online social network forensics</atitle><jtitle>Computers & security</jtitle><date>2020-02</date><risdate>2020</risdate><volume>89</volume><spage>101675</spage><pages>101675-</pages><artnum>101675</artnum><issn>0167-4048</issn><eissn>1872-6208</eissn><abstract>Currently, examining social media networks is an integral part of most investigations. However, getting a clear view of the events relevant to the incident from a large set of data, such as social media, is a challenging task. Automation of the forensic and analysis process is the only solution to manage large data sets and get useful information. However, automation in digital forensics is a technical issue with legal implications. The legal system accepts only those automated processes that are reproducible, explainable, and rigorously testable. Therefore, automated forensic processes must be based on formal theories, which are rare in digital forensics. This article explains a theoretical and formal knowledge model for forensic automation on online social networks. This model consists of an event-based knowledge model, which provides theoretical concepts that can assist in the construction and interpretation of the events related to the incident under investigation. The proposed model is implemented through an ontology to provide semantically rich and formal representation to the concepts. This article also describes the feasibility of legally acceptable automated analysis operators, based on a formal theory, for online social network forensics.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.cose.2019.101675</doi><orcidid>https://orcid.org/0000-0003-3615-6202</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-4048 |
ispartof | Computers & security, 2020-02, Vol.89, p.101675, Article 101675 |
issn | 0167-4048 1872-6208 |
language | eng |
recordid | cdi_proquest_journals_2348317498 |
source | Access via ScienceDirect (Elsevier) |
subjects | Automation Computer forensics Digital media Forensic automation Forensic computing Forensic ontology Forensic sciences Formal model Knowledge model Knowledge representation Online social network forensics Operators (mathematics) Social networks |
title | Formal knowledge model for online social network forensics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T13%3A14%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Formal%20knowledge%20model%20for%20online%20social%20network%20forensics&rft.jtitle=Computers%20&%20security&rft.au=Arshad,%20Humaira&rft.date=2020-02&rft.volume=89&rft.spage=101675&rft.pages=101675-&rft.artnum=101675&rft.issn=0167-4048&rft.eissn=1872-6208&rft_id=info:doi/10.1016/j.cose.2019.101675&rft_dat=%3Cproquest_cross%3E2348317498%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2348317498&rft_id=info:pmid/&rft_els_id=S0167404819302160&rfr_iscdi=true |