Denoising scanner effects from multimodal MRI data using linked independent component analysis
Pooling magnetic resonance imaging (MRI) data across research studies, or utilizing shared data from imaging repositories, presents exceptional opportunities to advance and enhance reproducibility of neuroscience research. However, scanner confounds hinder pooling data collected on different scanner...
Gespeichert in:
Veröffentlicht in: | NeuroImage (Orlando, Fla.) Fla.), 2020-03, Vol.208, p.116388-116388, Article 116388 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 116388 |
---|---|
container_issue | |
container_start_page | 116388 |
container_title | NeuroImage (Orlando, Fla.) |
container_volume | 208 |
creator | Li, Huanjie Smith, Stephen M. Gruber, Staci Lukas, Scott E. Silveri, Marisa M. Hill, Kevin P. Killgore, William D.S. Nickerson, Lisa D. |
description | Pooling magnetic resonance imaging (MRI) data across research studies, or utilizing shared data from imaging repositories, presents exceptional opportunities to advance and enhance reproducibility of neuroscience research. However, scanner confounds hinder pooling data collected on different scanners or across software and hardware upgrades on the same scanner, even when all acquisition protocols are harmonized. These confounds reduce power and can lead to spurious findings. Unfortunately, methods to address this problem are scant. In this study, we propose a novel denoising approach that implements a data-driven linked independent component analysis (LICA) to identify scanner-related effects for removal from multimodal MRI to denoise scanner effects. We utilized multi-study data to test our proposed method that were collected on a single 3T scanner, pre- and post-software and major hardware upgrades and using different acquisition parameters. Our proposed denoising method shows a greater reduction of scanner-related variance compared with standard GLM confound regression or ICA-based single-modality denoising. Although we did not test it here, for combining data across different scanners, LICA should prove even better at identifying scanner effects as between-scanner variability is generally much larger than within-scanner variability. Our method has great promise for denoising scanner effects in multi-study and in large-scale multi-site studies that may be confounded by scanner differences. |
doi_str_mv | 10.1016/j.neuroimage.2019.116388 |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2348269150</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1053811919309796</els_id><doaj_id>oai_doaj_org_article_4f8780770a794987ab835c0256b80260</doaj_id><sourcerecordid>2348269150</sourcerecordid><originalsourceid>FETCH-LOGICAL-c518t-6784453f616424ef1c055ed3247f08884c3fe0b93f064a0553717310a079dc423</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhiMEoqXwF5AlLlyy-DO2j1A-ulIREoIrltcZrxwSe7ETpP57nKYtEhcu9mj8zDueeZsGEbwjmHRvhl2EJacw2SPsKCZ6R0jHlHrUnBOsRauFpI_XWLBWEaLPmmelDBhjTbh62pwxIjuhMD1vfryHmEIJ8YiKszFCRuA9uLkgn9OEpmWcw5R6O6LPX_eot7NFyy0-hvgTehRiDyeoR5yRS9MpxTWy0Y43JZTnzRNvxwIv7u6L5vvHD98ur9rrL5_2l2-vWyeImttOKs4F8x3pOOXgicNCQM8olx4rpbhjHvBBM487busbk0Qygi2Wunecsotmv-n2yQ7mlOtm8o1JNpjbRMpHY_Mc3AiGeyUVlhJbqblW0h4UEw5T0R3qRjpctV5vWqecfi1QZjOF4mAcbYS0FEMZUZIJqnlFX_2DDmnJdfaV4op2mohVUG2Uy6mUDP7hgwSb1U8zmL9-mtVPs_lZS1_eNVgOE_QPhfcGVuDdBkDd7u8A2RQXIDroQ64u1vHD_7v8Aeuqs7Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2348269150</pqid></control><display><type>article</type><title>Denoising scanner effects from multimodal MRI data using linked independent component analysis</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Li, Huanjie ; Smith, Stephen M. ; Gruber, Staci ; Lukas, Scott E. ; Silveri, Marisa M. ; Hill, Kevin P. ; Killgore, William D.S. ; Nickerson, Lisa D.</creator><creatorcontrib>Li, Huanjie ; Smith, Stephen M. ; Gruber, Staci ; Lukas, Scott E. ; Silveri, Marisa M. ; Hill, Kevin P. ; Killgore, William D.S. ; Nickerson, Lisa D.</creatorcontrib><description>Pooling magnetic resonance imaging (MRI) data across research studies, or utilizing shared data from imaging repositories, presents exceptional opportunities to advance and enhance reproducibility of neuroscience research. However, scanner confounds hinder pooling data collected on different scanners or across software and hardware upgrades on the same scanner, even when all acquisition protocols are harmonized. These confounds reduce power and can lead to spurious findings. Unfortunately, methods to address this problem are scant. In this study, we propose a novel denoising approach that implements a data-driven linked independent component analysis (LICA) to identify scanner-related effects for removal from multimodal MRI to denoise scanner effects. We utilized multi-study data to test our proposed method that were collected on a single 3T scanner, pre- and post-software and major hardware upgrades and using different acquisition parameters. Our proposed denoising method shows a greater reduction of scanner-related variance compared with standard GLM confound regression or ICA-based single-modality denoising. Although we did not test it here, for combining data across different scanners, LICA should prove even better at identifying scanner effects as between-scanner variability is generally much larger than within-scanner variability. Our method has great promise for denoising scanner effects in multi-study and in large-scale multi-site studies that may be confounded by scanner differences.</description><identifier>ISSN: 1053-8119</identifier><identifier>ISSN: 1095-9572</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1016/j.neuroimage.2019.116388</identifier><identifier>PMID: 31765802</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adult ; Brain - diagnostic imaging ; Brain research ; Computer programs ; Data fusion ; Datasets ; Diffusion Tensor Imaging - methods ; Diffusion Tensor Imaging - standards ; Functional Neuroimaging - methods ; Functional Neuroimaging - standards ; Humans ; Information sharing ; Linked independent component analysis ; Longitudinal studies ; Magnetic resonance imaging ; Magnetic Resonance Imaging - instrumentation ; Magnetic Resonance Imaging - methods ; Magnetic Resonance Imaging - standards ; Medical imaging ; Methods ; Models, Statistical ; Multimodal ; Multimodal Imaging ; Multivariate regression ; Nervous system ; Neuroimaging - instrumentation ; Neuroimaging - methods ; Neuroimaging - standards ; Noise ; Scanners ; Software upgrading</subject><ispartof>NeuroImage (Orlando, Fla.), 2020-03, Vol.208, p.116388-116388, Article 116388</ispartof><rights>2019</rights><rights>Copyright © 2019. Published by Elsevier Inc.</rights><rights>Copyright Elsevier Limited Mar 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c518t-6784453f616424ef1c055ed3247f08884c3fe0b93f064a0553717310a079dc423</citedby><cites>FETCH-LOGICAL-c518t-6784453f616424ef1c055ed3247f08884c3fe0b93f064a0553717310a079dc423</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1053811919309796$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31765802$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Huanjie</creatorcontrib><creatorcontrib>Smith, Stephen M.</creatorcontrib><creatorcontrib>Gruber, Staci</creatorcontrib><creatorcontrib>Lukas, Scott E.</creatorcontrib><creatorcontrib>Silveri, Marisa M.</creatorcontrib><creatorcontrib>Hill, Kevin P.</creatorcontrib><creatorcontrib>Killgore, William D.S.</creatorcontrib><creatorcontrib>Nickerson, Lisa D.</creatorcontrib><title>Denoising scanner effects from multimodal MRI data using linked independent component analysis</title><title>NeuroImage (Orlando, Fla.)</title><addtitle>Neuroimage</addtitle><description>Pooling magnetic resonance imaging (MRI) data across research studies, or utilizing shared data from imaging repositories, presents exceptional opportunities to advance and enhance reproducibility of neuroscience research. However, scanner confounds hinder pooling data collected on different scanners or across software and hardware upgrades on the same scanner, even when all acquisition protocols are harmonized. These confounds reduce power and can lead to spurious findings. Unfortunately, methods to address this problem are scant. In this study, we propose a novel denoising approach that implements a data-driven linked independent component analysis (LICA) to identify scanner-related effects for removal from multimodal MRI to denoise scanner effects. We utilized multi-study data to test our proposed method that were collected on a single 3T scanner, pre- and post-software and major hardware upgrades and using different acquisition parameters. Our proposed denoising method shows a greater reduction of scanner-related variance compared with standard GLM confound regression or ICA-based single-modality denoising. Although we did not test it here, for combining data across different scanners, LICA should prove even better at identifying scanner effects as between-scanner variability is generally much larger than within-scanner variability. Our method has great promise for denoising scanner effects in multi-study and in large-scale multi-site studies that may be confounded by scanner differences.</description><subject>Adult</subject><subject>Brain - diagnostic imaging</subject><subject>Brain research</subject><subject>Computer programs</subject><subject>Data fusion</subject><subject>Datasets</subject><subject>Diffusion Tensor Imaging - methods</subject><subject>Diffusion Tensor Imaging - standards</subject><subject>Functional Neuroimaging - methods</subject><subject>Functional Neuroimaging - standards</subject><subject>Humans</subject><subject>Information sharing</subject><subject>Linked independent component analysis</subject><subject>Longitudinal studies</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - instrumentation</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Magnetic Resonance Imaging - standards</subject><subject>Medical imaging</subject><subject>Methods</subject><subject>Models, Statistical</subject><subject>Multimodal</subject><subject>Multimodal Imaging</subject><subject>Multivariate regression</subject><subject>Nervous system</subject><subject>Neuroimaging - instrumentation</subject><subject>Neuroimaging - methods</subject><subject>Neuroimaging - standards</subject><subject>Noise</subject><subject>Scanners</subject><subject>Software upgrading</subject><issn>1053-8119</issn><issn>1095-9572</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqFkU1v1DAQhiMEoqXwF5AlLlyy-DO2j1A-ulIREoIrltcZrxwSe7ETpP57nKYtEhcu9mj8zDueeZsGEbwjmHRvhl2EJacw2SPsKCZ6R0jHlHrUnBOsRauFpI_XWLBWEaLPmmelDBhjTbh62pwxIjuhMD1vfryHmEIJ8YiKszFCRuA9uLkgn9OEpmWcw5R6O6LPX_eot7NFyy0-hvgTehRiDyeoR5yRS9MpxTWy0Y43JZTnzRNvxwIv7u6L5vvHD98ur9rrL5_2l2-vWyeImttOKs4F8x3pOOXgicNCQM8olx4rpbhjHvBBM487busbk0Qygi2Wunecsotmv-n2yQ7mlOtm8o1JNpjbRMpHY_Mc3AiGeyUVlhJbqblW0h4UEw5T0R3qRjpctV5vWqecfi1QZjOF4mAcbYS0FEMZUZIJqnlFX_2DDmnJdfaV4op2mohVUG2Uy6mUDP7hgwSb1U8zmL9-mtVPs_lZS1_eNVgOE_QPhfcGVuDdBkDd7u8A2RQXIDroQ64u1vHD_7v8Aeuqs7Q</recordid><startdate>202003</startdate><enddate>202003</enddate><creator>Li, Huanjie</creator><creator>Smith, Stephen M.</creator><creator>Gruber, Staci</creator><creator>Lukas, Scott E.</creator><creator>Silveri, Marisa M.</creator><creator>Hill, Kevin P.</creator><creator>Killgore, William D.S.</creator><creator>Nickerson, Lisa D.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>DOA</scope></search><sort><creationdate>202003</creationdate><title>Denoising scanner effects from multimodal MRI data using linked independent component analysis</title><author>Li, Huanjie ; Smith, Stephen M. ; Gruber, Staci ; Lukas, Scott E. ; Silveri, Marisa M. ; Hill, Kevin P. ; Killgore, William D.S. ; Nickerson, Lisa D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c518t-6784453f616424ef1c055ed3247f08884c3fe0b93f064a0553717310a079dc423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adult</topic><topic>Brain - diagnostic imaging</topic><topic>Brain research</topic><topic>Computer programs</topic><topic>Data fusion</topic><topic>Datasets</topic><topic>Diffusion Tensor Imaging - methods</topic><topic>Diffusion Tensor Imaging - standards</topic><topic>Functional Neuroimaging - methods</topic><topic>Functional Neuroimaging - standards</topic><topic>Humans</topic><topic>Information sharing</topic><topic>Linked independent component analysis</topic><topic>Longitudinal studies</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - instrumentation</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Magnetic Resonance Imaging - standards</topic><topic>Medical imaging</topic><topic>Methods</topic><topic>Models, Statistical</topic><topic>Multimodal</topic><topic>Multimodal Imaging</topic><topic>Multivariate regression</topic><topic>Nervous system</topic><topic>Neuroimaging - instrumentation</topic><topic>Neuroimaging - methods</topic><topic>Neuroimaging - standards</topic><topic>Noise</topic><topic>Scanners</topic><topic>Software upgrading</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Huanjie</creatorcontrib><creatorcontrib>Smith, Stephen M.</creatorcontrib><creatorcontrib>Gruber, Staci</creatorcontrib><creatorcontrib>Lukas, Scott E.</creatorcontrib><creatorcontrib>Silveri, Marisa M.</creatorcontrib><creatorcontrib>Hill, Kevin P.</creatorcontrib><creatorcontrib>Killgore, William D.S.</creatorcontrib><creatorcontrib>Nickerson, Lisa D.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest Health & Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health & Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Huanjie</au><au>Smith, Stephen M.</au><au>Gruber, Staci</au><au>Lukas, Scott E.</au><au>Silveri, Marisa M.</au><au>Hill, Kevin P.</au><au>Killgore, William D.S.</au><au>Nickerson, Lisa D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Denoising scanner effects from multimodal MRI data using linked independent component analysis</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><addtitle>Neuroimage</addtitle><date>2020-03</date><risdate>2020</risdate><volume>208</volume><spage>116388</spage><epage>116388</epage><pages>116388-116388</pages><artnum>116388</artnum><issn>1053-8119</issn><issn>1095-9572</issn><eissn>1095-9572</eissn><abstract>Pooling magnetic resonance imaging (MRI) data across research studies, or utilizing shared data from imaging repositories, presents exceptional opportunities to advance and enhance reproducibility of neuroscience research. However, scanner confounds hinder pooling data collected on different scanners or across software and hardware upgrades on the same scanner, even when all acquisition protocols are harmonized. These confounds reduce power and can lead to spurious findings. Unfortunately, methods to address this problem are scant. In this study, we propose a novel denoising approach that implements a data-driven linked independent component analysis (LICA) to identify scanner-related effects for removal from multimodal MRI to denoise scanner effects. We utilized multi-study data to test our proposed method that were collected on a single 3T scanner, pre- and post-software and major hardware upgrades and using different acquisition parameters. Our proposed denoising method shows a greater reduction of scanner-related variance compared with standard GLM confound regression or ICA-based single-modality denoising. Although we did not test it here, for combining data across different scanners, LICA should prove even better at identifying scanner effects as between-scanner variability is generally much larger than within-scanner variability. Our method has great promise for denoising scanner effects in multi-study and in large-scale multi-site studies that may be confounded by scanner differences.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>31765802</pmid><doi>10.1016/j.neuroimage.2019.116388</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1053-8119 |
ispartof | NeuroImage (Orlando, Fla.), 2020-03, Vol.208, p.116388-116388, Article 116388 |
issn | 1053-8119 1095-9572 1095-9572 |
language | eng |
recordid | cdi_proquest_journals_2348269150 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Adult Brain - diagnostic imaging Brain research Computer programs Data fusion Datasets Diffusion Tensor Imaging - methods Diffusion Tensor Imaging - standards Functional Neuroimaging - methods Functional Neuroimaging - standards Humans Information sharing Linked independent component analysis Longitudinal studies Magnetic resonance imaging Magnetic Resonance Imaging - instrumentation Magnetic Resonance Imaging - methods Magnetic Resonance Imaging - standards Medical imaging Methods Models, Statistical Multimodal Multimodal Imaging Multivariate regression Nervous system Neuroimaging - instrumentation Neuroimaging - methods Neuroimaging - standards Noise Scanners Software upgrading |
title | Denoising scanner effects from multimodal MRI data using linked independent component analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T18%3A51%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Denoising%20scanner%20effects%20from%20multimodal%20MRI%20data%20using%20linked%20independent%20component%20analysis&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Li,%20Huanjie&rft.date=2020-03&rft.volume=208&rft.spage=116388&rft.epage=116388&rft.pages=116388-116388&rft.artnum=116388&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1016/j.neuroimage.2019.116388&rft_dat=%3Cproquest_doaj_%3E2348269150%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2348269150&rft_id=info:pmid/31765802&rft_els_id=S1053811919309796&rft_doaj_id=oai_doaj_org_article_4f8780770a794987ab835c0256b80260&rfr_iscdi=true |