Denoising scanner effects from multimodal MRI data using linked independent component analysis

Pooling magnetic resonance imaging (MRI) data across research studies, or utilizing shared data from imaging repositories, presents exceptional opportunities to advance and enhance reproducibility of neuroscience research. However, scanner confounds hinder pooling data collected on different scanner...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NeuroImage (Orlando, Fla.) Fla.), 2020-03, Vol.208, p.116388-116388, Article 116388
Hauptverfasser: Li, Huanjie, Smith, Stephen M., Gruber, Staci, Lukas, Scott E., Silveri, Marisa M., Hill, Kevin P., Killgore, William D.S., Nickerson, Lisa D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 116388
container_issue
container_start_page 116388
container_title NeuroImage (Orlando, Fla.)
container_volume 208
creator Li, Huanjie
Smith, Stephen M.
Gruber, Staci
Lukas, Scott E.
Silveri, Marisa M.
Hill, Kevin P.
Killgore, William D.S.
Nickerson, Lisa D.
description Pooling magnetic resonance imaging (MRI) data across research studies, or utilizing shared data from imaging repositories, presents exceptional opportunities to advance and enhance reproducibility of neuroscience research. However, scanner confounds hinder pooling data collected on different scanners or across software and hardware upgrades on the same scanner, even when all acquisition protocols are harmonized. These confounds reduce power and can lead to spurious findings. Unfortunately, methods to address this problem are scant. In this study, we propose a novel denoising approach that implements a data-driven linked independent component analysis (LICA) to identify scanner-related effects for removal from multimodal MRI to denoise scanner effects. We utilized multi-study data to test our proposed method that were collected on a single 3T scanner, pre- and post-software and major hardware upgrades and using different acquisition parameters. Our proposed denoising method shows a greater reduction of scanner-related variance compared with standard GLM confound regression or ICA-based single-modality denoising. Although we did not test it here, for combining data across different scanners, LICA should prove even better at identifying scanner effects as between-scanner variability is generally much larger than within-scanner variability. Our method has great promise for denoising scanner effects in multi-study and in large-scale multi-site studies that may be confounded by scanner differences.
doi_str_mv 10.1016/j.neuroimage.2019.116388
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2348269150</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1053811919309796</els_id><doaj_id>oai_doaj_org_article_4f8780770a794987ab835c0256b80260</doaj_id><sourcerecordid>2348269150</sourcerecordid><originalsourceid>FETCH-LOGICAL-c518t-6784453f616424ef1c055ed3247f08884c3fe0b93f064a0553717310a079dc423</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhiMEoqXwF5AlLlyy-DO2j1A-ulIREoIrltcZrxwSe7ETpP57nKYtEhcu9mj8zDueeZsGEbwjmHRvhl2EJacw2SPsKCZ6R0jHlHrUnBOsRauFpI_XWLBWEaLPmmelDBhjTbh62pwxIjuhMD1vfryHmEIJ8YiKszFCRuA9uLkgn9OEpmWcw5R6O6LPX_eot7NFyy0-hvgTehRiDyeoR5yRS9MpxTWy0Y43JZTnzRNvxwIv7u6L5vvHD98ur9rrL5_2l2-vWyeImttOKs4F8x3pOOXgicNCQM8olx4rpbhjHvBBM487busbk0Qygi2Wunecsotmv-n2yQ7mlOtm8o1JNpjbRMpHY_Mc3AiGeyUVlhJbqblW0h4UEw5T0R3qRjpctV5vWqecfi1QZjOF4mAcbYS0FEMZUZIJqnlFX_2DDmnJdfaV4op2mohVUG2Uy6mUDP7hgwSb1U8zmL9-mtVPs_lZS1_eNVgOE_QPhfcGVuDdBkDd7u8A2RQXIDroQ64u1vHD_7v8Aeuqs7Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2348269150</pqid></control><display><type>article</type><title>Denoising scanner effects from multimodal MRI data using linked independent component analysis</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Li, Huanjie ; Smith, Stephen M. ; Gruber, Staci ; Lukas, Scott E. ; Silveri, Marisa M. ; Hill, Kevin P. ; Killgore, William D.S. ; Nickerson, Lisa D.</creator><creatorcontrib>Li, Huanjie ; Smith, Stephen M. ; Gruber, Staci ; Lukas, Scott E. ; Silveri, Marisa M. ; Hill, Kevin P. ; Killgore, William D.S. ; Nickerson, Lisa D.</creatorcontrib><description>Pooling magnetic resonance imaging (MRI) data across research studies, or utilizing shared data from imaging repositories, presents exceptional opportunities to advance and enhance reproducibility of neuroscience research. However, scanner confounds hinder pooling data collected on different scanners or across software and hardware upgrades on the same scanner, even when all acquisition protocols are harmonized. These confounds reduce power and can lead to spurious findings. Unfortunately, methods to address this problem are scant. In this study, we propose a novel denoising approach that implements a data-driven linked independent component analysis (LICA) to identify scanner-related effects for removal from multimodal MRI to denoise scanner effects. We utilized multi-study data to test our proposed method that were collected on a single 3T scanner, pre- and post-software and major hardware upgrades and using different acquisition parameters. Our proposed denoising method shows a greater reduction of scanner-related variance compared with standard GLM confound regression or ICA-based single-modality denoising. Although we did not test it here, for combining data across different scanners, LICA should prove even better at identifying scanner effects as between-scanner variability is generally much larger than within-scanner variability. Our method has great promise for denoising scanner effects in multi-study and in large-scale multi-site studies that may be confounded by scanner differences.</description><identifier>ISSN: 1053-8119</identifier><identifier>ISSN: 1095-9572</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1016/j.neuroimage.2019.116388</identifier><identifier>PMID: 31765802</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adult ; Brain - diagnostic imaging ; Brain research ; Computer programs ; Data fusion ; Datasets ; Diffusion Tensor Imaging - methods ; Diffusion Tensor Imaging - standards ; Functional Neuroimaging - methods ; Functional Neuroimaging - standards ; Humans ; Information sharing ; Linked independent component analysis ; Longitudinal studies ; Magnetic resonance imaging ; Magnetic Resonance Imaging - instrumentation ; Magnetic Resonance Imaging - methods ; Magnetic Resonance Imaging - standards ; Medical imaging ; Methods ; Models, Statistical ; Multimodal ; Multimodal Imaging ; Multivariate regression ; Nervous system ; Neuroimaging - instrumentation ; Neuroimaging - methods ; Neuroimaging - standards ; Noise ; Scanners ; Software upgrading</subject><ispartof>NeuroImage (Orlando, Fla.), 2020-03, Vol.208, p.116388-116388, Article 116388</ispartof><rights>2019</rights><rights>Copyright © 2019. Published by Elsevier Inc.</rights><rights>Copyright Elsevier Limited Mar 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c518t-6784453f616424ef1c055ed3247f08884c3fe0b93f064a0553717310a079dc423</citedby><cites>FETCH-LOGICAL-c518t-6784453f616424ef1c055ed3247f08884c3fe0b93f064a0553717310a079dc423</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1053811919309796$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31765802$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Huanjie</creatorcontrib><creatorcontrib>Smith, Stephen M.</creatorcontrib><creatorcontrib>Gruber, Staci</creatorcontrib><creatorcontrib>Lukas, Scott E.</creatorcontrib><creatorcontrib>Silveri, Marisa M.</creatorcontrib><creatorcontrib>Hill, Kevin P.</creatorcontrib><creatorcontrib>Killgore, William D.S.</creatorcontrib><creatorcontrib>Nickerson, Lisa D.</creatorcontrib><title>Denoising scanner effects from multimodal MRI data using linked independent component analysis</title><title>NeuroImage (Orlando, Fla.)</title><addtitle>Neuroimage</addtitle><description>Pooling magnetic resonance imaging (MRI) data across research studies, or utilizing shared data from imaging repositories, presents exceptional opportunities to advance and enhance reproducibility of neuroscience research. However, scanner confounds hinder pooling data collected on different scanners or across software and hardware upgrades on the same scanner, even when all acquisition protocols are harmonized. These confounds reduce power and can lead to spurious findings. Unfortunately, methods to address this problem are scant. In this study, we propose a novel denoising approach that implements a data-driven linked independent component analysis (LICA) to identify scanner-related effects for removal from multimodal MRI to denoise scanner effects. We utilized multi-study data to test our proposed method that were collected on a single 3T scanner, pre- and post-software and major hardware upgrades and using different acquisition parameters. Our proposed denoising method shows a greater reduction of scanner-related variance compared with standard GLM confound regression or ICA-based single-modality denoising. Although we did not test it here, for combining data across different scanners, LICA should prove even better at identifying scanner effects as between-scanner variability is generally much larger than within-scanner variability. Our method has great promise for denoising scanner effects in multi-study and in large-scale multi-site studies that may be confounded by scanner differences.</description><subject>Adult</subject><subject>Brain - diagnostic imaging</subject><subject>Brain research</subject><subject>Computer programs</subject><subject>Data fusion</subject><subject>Datasets</subject><subject>Diffusion Tensor Imaging - methods</subject><subject>Diffusion Tensor Imaging - standards</subject><subject>Functional Neuroimaging - methods</subject><subject>Functional Neuroimaging - standards</subject><subject>Humans</subject><subject>Information sharing</subject><subject>Linked independent component analysis</subject><subject>Longitudinal studies</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - instrumentation</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Magnetic Resonance Imaging - standards</subject><subject>Medical imaging</subject><subject>Methods</subject><subject>Models, Statistical</subject><subject>Multimodal</subject><subject>Multimodal Imaging</subject><subject>Multivariate regression</subject><subject>Nervous system</subject><subject>Neuroimaging - instrumentation</subject><subject>Neuroimaging - methods</subject><subject>Neuroimaging - standards</subject><subject>Noise</subject><subject>Scanners</subject><subject>Software upgrading</subject><issn>1053-8119</issn><issn>1095-9572</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqFkU1v1DAQhiMEoqXwF5AlLlyy-DO2j1A-ulIREoIrltcZrxwSe7ETpP57nKYtEhcu9mj8zDueeZsGEbwjmHRvhl2EJacw2SPsKCZ6R0jHlHrUnBOsRauFpI_XWLBWEaLPmmelDBhjTbh62pwxIjuhMD1vfryHmEIJ8YiKszFCRuA9uLkgn9OEpmWcw5R6O6LPX_eot7NFyy0-hvgTehRiDyeoR5yRS9MpxTWy0Y43JZTnzRNvxwIv7u6L5vvHD98ur9rrL5_2l2-vWyeImttOKs4F8x3pOOXgicNCQM8olx4rpbhjHvBBM487busbk0Qygi2Wunecsotmv-n2yQ7mlOtm8o1JNpjbRMpHY_Mc3AiGeyUVlhJbqblW0h4UEw5T0R3qRjpctV5vWqecfi1QZjOF4mAcbYS0FEMZUZIJqnlFX_2DDmnJdfaV4op2mohVUG2Uy6mUDP7hgwSb1U8zmL9-mtVPs_lZS1_eNVgOE_QPhfcGVuDdBkDd7u8A2RQXIDroQ64u1vHD_7v8Aeuqs7Q</recordid><startdate>202003</startdate><enddate>202003</enddate><creator>Li, Huanjie</creator><creator>Smith, Stephen M.</creator><creator>Gruber, Staci</creator><creator>Lukas, Scott E.</creator><creator>Silveri, Marisa M.</creator><creator>Hill, Kevin P.</creator><creator>Killgore, William D.S.</creator><creator>Nickerson, Lisa D.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>DOA</scope></search><sort><creationdate>202003</creationdate><title>Denoising scanner effects from multimodal MRI data using linked independent component analysis</title><author>Li, Huanjie ; Smith, Stephen M. ; Gruber, Staci ; Lukas, Scott E. ; Silveri, Marisa M. ; Hill, Kevin P. ; Killgore, William D.S. ; Nickerson, Lisa D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c518t-6784453f616424ef1c055ed3247f08884c3fe0b93f064a0553717310a079dc423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adult</topic><topic>Brain - diagnostic imaging</topic><topic>Brain research</topic><topic>Computer programs</topic><topic>Data fusion</topic><topic>Datasets</topic><topic>Diffusion Tensor Imaging - methods</topic><topic>Diffusion Tensor Imaging - standards</topic><topic>Functional Neuroimaging - methods</topic><topic>Functional Neuroimaging - standards</topic><topic>Humans</topic><topic>Information sharing</topic><topic>Linked independent component analysis</topic><topic>Longitudinal studies</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - instrumentation</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Magnetic Resonance Imaging - standards</topic><topic>Medical imaging</topic><topic>Methods</topic><topic>Models, Statistical</topic><topic>Multimodal</topic><topic>Multimodal Imaging</topic><topic>Multivariate regression</topic><topic>Nervous system</topic><topic>Neuroimaging - instrumentation</topic><topic>Neuroimaging - methods</topic><topic>Neuroimaging - standards</topic><topic>Noise</topic><topic>Scanners</topic><topic>Software upgrading</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Huanjie</creatorcontrib><creatorcontrib>Smith, Stephen M.</creatorcontrib><creatorcontrib>Gruber, Staci</creatorcontrib><creatorcontrib>Lukas, Scott E.</creatorcontrib><creatorcontrib>Silveri, Marisa M.</creatorcontrib><creatorcontrib>Hill, Kevin P.</creatorcontrib><creatorcontrib>Killgore, William D.S.</creatorcontrib><creatorcontrib>Nickerson, Lisa D.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest Health &amp; Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health &amp; Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Huanjie</au><au>Smith, Stephen M.</au><au>Gruber, Staci</au><au>Lukas, Scott E.</au><au>Silveri, Marisa M.</au><au>Hill, Kevin P.</au><au>Killgore, William D.S.</au><au>Nickerson, Lisa D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Denoising scanner effects from multimodal MRI data using linked independent component analysis</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><addtitle>Neuroimage</addtitle><date>2020-03</date><risdate>2020</risdate><volume>208</volume><spage>116388</spage><epage>116388</epage><pages>116388-116388</pages><artnum>116388</artnum><issn>1053-8119</issn><issn>1095-9572</issn><eissn>1095-9572</eissn><abstract>Pooling magnetic resonance imaging (MRI) data across research studies, or utilizing shared data from imaging repositories, presents exceptional opportunities to advance and enhance reproducibility of neuroscience research. However, scanner confounds hinder pooling data collected on different scanners or across software and hardware upgrades on the same scanner, even when all acquisition protocols are harmonized. These confounds reduce power and can lead to spurious findings. Unfortunately, methods to address this problem are scant. In this study, we propose a novel denoising approach that implements a data-driven linked independent component analysis (LICA) to identify scanner-related effects for removal from multimodal MRI to denoise scanner effects. We utilized multi-study data to test our proposed method that were collected on a single 3T scanner, pre- and post-software and major hardware upgrades and using different acquisition parameters. Our proposed denoising method shows a greater reduction of scanner-related variance compared with standard GLM confound regression or ICA-based single-modality denoising. Although we did not test it here, for combining data across different scanners, LICA should prove even better at identifying scanner effects as between-scanner variability is generally much larger than within-scanner variability. Our method has great promise for denoising scanner effects in multi-study and in large-scale multi-site studies that may be confounded by scanner differences.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>31765802</pmid><doi>10.1016/j.neuroimage.2019.116388</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1053-8119
ispartof NeuroImage (Orlando, Fla.), 2020-03, Vol.208, p.116388-116388, Article 116388
issn 1053-8119
1095-9572
1095-9572
language eng
recordid cdi_proquest_journals_2348269150
source MEDLINE; DOAJ Directory of Open Access Journals; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Adult
Brain - diagnostic imaging
Brain research
Computer programs
Data fusion
Datasets
Diffusion Tensor Imaging - methods
Diffusion Tensor Imaging - standards
Functional Neuroimaging - methods
Functional Neuroimaging - standards
Humans
Information sharing
Linked independent component analysis
Longitudinal studies
Magnetic resonance imaging
Magnetic Resonance Imaging - instrumentation
Magnetic Resonance Imaging - methods
Magnetic Resonance Imaging - standards
Medical imaging
Methods
Models, Statistical
Multimodal
Multimodal Imaging
Multivariate regression
Nervous system
Neuroimaging - instrumentation
Neuroimaging - methods
Neuroimaging - standards
Noise
Scanners
Software upgrading
title Denoising scanner effects from multimodal MRI data using linked independent component analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T18%3A51%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Denoising%20scanner%20effects%20from%20multimodal%20MRI%20data%20using%20linked%20independent%20component%20analysis&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Li,%20Huanjie&rft.date=2020-03&rft.volume=208&rft.spage=116388&rft.epage=116388&rft.pages=116388-116388&rft.artnum=116388&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1016/j.neuroimage.2019.116388&rft_dat=%3Cproquest_doaj_%3E2348269150%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2348269150&rft_id=info:pmid/31765802&rft_els_id=S1053811919309796&rft_doaj_id=oai_doaj_org_article_4f8780770a794987ab835c0256b80260&rfr_iscdi=true