Mean and median bias reduction in generalized linear models

This paper presents an integrated framework for estimation and inference from generalized linear models using adjusted score equations that result in mean and median bias reduction. The framework unifies theoretical and methodological aspects of past research on mean bias reduction and accommodates,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistics and computing 2020-02, Vol.30 (1), p.43-59
Hauptverfasser: Kosmidis, Ioannis, Kenne Pagui, Euloge Clovis, Sartori, Nicola
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 59
container_issue 1
container_start_page 43
container_title Statistics and computing
container_volume 30
creator Kosmidis, Ioannis
Kenne Pagui, Euloge Clovis
Sartori, Nicola
description This paper presents an integrated framework for estimation and inference from generalized linear models using adjusted score equations that result in mean and median bias reduction. The framework unifies theoretical and methodological aspects of past research on mean bias reduction and accommodates, in a natural way, new advances on median bias reduction. General expressions for the adjusted score functions are derived in terms of quantities that are readily available in standard software for fitting generalized linear models. The resulting estimating equations are solved using a unifying quasi-Fisher scoring algorithm that is shown to be equivalent to iteratively reweighted least squares with appropriately adjusted working variates. Formal links between the iterations for mean and median bias reduction are established. Core model invariance properties are used to develop a novel mixed adjustment strategy when the estimation of a dispersion parameter is necessary. It is also shown how median bias reduction in multinomial logistic regression can be done using the equivalent Poisson log-linear model. The estimates coming out from mean and median bias reduction are found to overcome practical issues related to infinite estimates that can occur with positive probability in generalized linear models with multinomial or discrete responses, and can result in valid inferences even in the presence of a high-dimensional nuisance parameter.
doi_str_mv 10.1007/s11222-019-09860-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2348263370</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2348263370</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-fb07f47665bbcc9d1fe3107189f599d7aca5e1f70547233f590773d82bc3246a3</originalsourceid><addsrcrecordid>eNp9kEFLAzEUhIMoWKt_wNOC59X3kmyywZMUrULFi55DdpOUlG22Ju1Bf73RFbx5esMwMw8-Qi4RrhFA3mRESmkNqGpQrYBaHJEZNpLVyGRzTGagislQ8lNylvMGAFEwPiO3z87EykRbbZ0NRXbB5Co5e-j3YYxViNXaRZfMED6drYYQnUnVdrRuyOfkxJshu4vfOydvD_evi8d69bJ8Wtyt6p5Tta99B9JzKUTTdX2vLHrHECS2yjdKWWl60zj0EhouKWPFBCmZbWnXM8qFYXNyNe3u0vh-cHmvN-MhxfJSU8ZbKhiTUFJ0SvVpzDk5r3cpbE360Aj6G5KeIOkCSf9A0qKU2FTKJRzXLv1N_9P6ArtraHg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2348263370</pqid></control><display><type>article</type><title>Mean and median bias reduction in generalized linear models</title><source>SpringerLink Journals - AutoHoldings</source><creator>Kosmidis, Ioannis ; Kenne Pagui, Euloge Clovis ; Sartori, Nicola</creator><creatorcontrib>Kosmidis, Ioannis ; Kenne Pagui, Euloge Clovis ; Sartori, Nicola</creatorcontrib><description>This paper presents an integrated framework for estimation and inference from generalized linear models using adjusted score equations that result in mean and median bias reduction. The framework unifies theoretical and methodological aspects of past research on mean bias reduction and accommodates, in a natural way, new advances on median bias reduction. General expressions for the adjusted score functions are derived in terms of quantities that are readily available in standard software for fitting generalized linear models. The resulting estimating equations are solved using a unifying quasi-Fisher scoring algorithm that is shown to be equivalent to iteratively reweighted least squares with appropriately adjusted working variates. Formal links between the iterations for mean and median bias reduction are established. Core model invariance properties are used to develop a novel mixed adjustment strategy when the estimation of a dispersion parameter is necessary. It is also shown how median bias reduction in multinomial logistic regression can be done using the equivalent Poisson log-linear model. The estimates coming out from mean and median bias reduction are found to overcome practical issues related to infinite estimates that can occur with positive probability in generalized linear models with multinomial or discrete responses, and can result in valid inferences even in the presence of a high-dimensional nuisance parameter.</description><identifier>ISSN: 0960-3174</identifier><identifier>EISSN: 1573-1375</identifier><identifier>DOI: 10.1007/s11222-019-09860-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Artificial Intelligence ; Bias ; Equivalence ; Generalized linear models ; Mathematics and Statistics ; Parameter estimation ; Probability and Statistics in Computer Science ; Reduction ; Statistical analysis ; Statistical models ; Statistical Theory and Methods ; Statistics ; Statistics and Computing/Statistics Programs</subject><ispartof>Statistics and computing, 2020-02, Vol.30 (1), p.43-59</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-fb07f47665bbcc9d1fe3107189f599d7aca5e1f70547233f590773d82bc3246a3</citedby><cites>FETCH-LOGICAL-c429t-fb07f47665bbcc9d1fe3107189f599d7aca5e1f70547233f590773d82bc3246a3</cites><orcidid>0000-0003-1556-0302 ; 0000-0002-8998-9251 ; 0000-0002-3063-8385</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11222-019-09860-6$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11222-019-09860-6$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Kosmidis, Ioannis</creatorcontrib><creatorcontrib>Kenne Pagui, Euloge Clovis</creatorcontrib><creatorcontrib>Sartori, Nicola</creatorcontrib><title>Mean and median bias reduction in generalized linear models</title><title>Statistics and computing</title><addtitle>Stat Comput</addtitle><description>This paper presents an integrated framework for estimation and inference from generalized linear models using adjusted score equations that result in mean and median bias reduction. The framework unifies theoretical and methodological aspects of past research on mean bias reduction and accommodates, in a natural way, new advances on median bias reduction. General expressions for the adjusted score functions are derived in terms of quantities that are readily available in standard software for fitting generalized linear models. The resulting estimating equations are solved using a unifying quasi-Fisher scoring algorithm that is shown to be equivalent to iteratively reweighted least squares with appropriately adjusted working variates. Formal links between the iterations for mean and median bias reduction are established. Core model invariance properties are used to develop a novel mixed adjustment strategy when the estimation of a dispersion parameter is necessary. It is also shown how median bias reduction in multinomial logistic regression can be done using the equivalent Poisson log-linear model. The estimates coming out from mean and median bias reduction are found to overcome practical issues related to infinite estimates that can occur with positive probability in generalized linear models with multinomial or discrete responses, and can result in valid inferences even in the presence of a high-dimensional nuisance parameter.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Bias</subject><subject>Equivalence</subject><subject>Generalized linear models</subject><subject>Mathematics and Statistics</subject><subject>Parameter estimation</subject><subject>Probability and Statistics in Computer Science</subject><subject>Reduction</subject><subject>Statistical analysis</subject><subject>Statistical models</subject><subject>Statistical Theory and Methods</subject><subject>Statistics</subject><subject>Statistics and Computing/Statistics Programs</subject><issn>0960-3174</issn><issn>1573-1375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kEFLAzEUhIMoWKt_wNOC59X3kmyywZMUrULFi55DdpOUlG22Ju1Bf73RFbx5esMwMw8-Qi4RrhFA3mRESmkNqGpQrYBaHJEZNpLVyGRzTGagislQ8lNylvMGAFEwPiO3z87EykRbbZ0NRXbB5Co5e-j3YYxViNXaRZfMED6drYYQnUnVdrRuyOfkxJshu4vfOydvD_evi8d69bJ8Wtyt6p5Tta99B9JzKUTTdX2vLHrHECS2yjdKWWl60zj0EhouKWPFBCmZbWnXM8qFYXNyNe3u0vh-cHmvN-MhxfJSU8ZbKhiTUFJ0SvVpzDk5r3cpbE360Aj6G5KeIOkCSf9A0qKU2FTKJRzXLv1N_9P6ArtraHg</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Kosmidis, Ioannis</creator><creator>Kenne Pagui, Euloge Clovis</creator><creator>Sartori, Nicola</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1556-0302</orcidid><orcidid>https://orcid.org/0000-0002-8998-9251</orcidid><orcidid>https://orcid.org/0000-0002-3063-8385</orcidid></search><sort><creationdate>20200201</creationdate><title>Mean and median bias reduction in generalized linear models</title><author>Kosmidis, Ioannis ; Kenne Pagui, Euloge Clovis ; Sartori, Nicola</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-fb07f47665bbcc9d1fe3107189f599d7aca5e1f70547233f590773d82bc3246a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Bias</topic><topic>Equivalence</topic><topic>Generalized linear models</topic><topic>Mathematics and Statistics</topic><topic>Parameter estimation</topic><topic>Probability and Statistics in Computer Science</topic><topic>Reduction</topic><topic>Statistical analysis</topic><topic>Statistical models</topic><topic>Statistical Theory and Methods</topic><topic>Statistics</topic><topic>Statistics and Computing/Statistics Programs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kosmidis, Ioannis</creatorcontrib><creatorcontrib>Kenne Pagui, Euloge Clovis</creatorcontrib><creatorcontrib>Sartori, Nicola</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Statistics and computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kosmidis, Ioannis</au><au>Kenne Pagui, Euloge Clovis</au><au>Sartori, Nicola</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mean and median bias reduction in generalized linear models</atitle><jtitle>Statistics and computing</jtitle><stitle>Stat Comput</stitle><date>2020-02-01</date><risdate>2020</risdate><volume>30</volume><issue>1</issue><spage>43</spage><epage>59</epage><pages>43-59</pages><issn>0960-3174</issn><eissn>1573-1375</eissn><abstract>This paper presents an integrated framework for estimation and inference from generalized linear models using adjusted score equations that result in mean and median bias reduction. The framework unifies theoretical and methodological aspects of past research on mean bias reduction and accommodates, in a natural way, new advances on median bias reduction. General expressions for the adjusted score functions are derived in terms of quantities that are readily available in standard software for fitting generalized linear models. The resulting estimating equations are solved using a unifying quasi-Fisher scoring algorithm that is shown to be equivalent to iteratively reweighted least squares with appropriately adjusted working variates. Formal links between the iterations for mean and median bias reduction are established. Core model invariance properties are used to develop a novel mixed adjustment strategy when the estimation of a dispersion parameter is necessary. It is also shown how median bias reduction in multinomial logistic regression can be done using the equivalent Poisson log-linear model. The estimates coming out from mean and median bias reduction are found to overcome practical issues related to infinite estimates that can occur with positive probability in generalized linear models with multinomial or discrete responses, and can result in valid inferences even in the presence of a high-dimensional nuisance parameter.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11222-019-09860-6</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-1556-0302</orcidid><orcidid>https://orcid.org/0000-0002-8998-9251</orcidid><orcidid>https://orcid.org/0000-0002-3063-8385</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0960-3174
ispartof Statistics and computing, 2020-02, Vol.30 (1), p.43-59
issn 0960-3174
1573-1375
language eng
recordid cdi_proquest_journals_2348263370
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Artificial Intelligence
Bias
Equivalence
Generalized linear models
Mathematics and Statistics
Parameter estimation
Probability and Statistics in Computer Science
Reduction
Statistical analysis
Statistical models
Statistical Theory and Methods
Statistics
Statistics and Computing/Statistics Programs
title Mean and median bias reduction in generalized linear models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T21%3A23%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mean%20and%20median%20bias%20reduction%20in%20generalized%20linear%20models&rft.jtitle=Statistics%20and%20computing&rft.au=Kosmidis,%20Ioannis&rft.date=2020-02-01&rft.volume=30&rft.issue=1&rft.spage=43&rft.epage=59&rft.pages=43-59&rft.issn=0960-3174&rft.eissn=1573-1375&rft_id=info:doi/10.1007/s11222-019-09860-6&rft_dat=%3Cproquest_cross%3E2348263370%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2348263370&rft_id=info:pmid/&rfr_iscdi=true