Mean and median bias reduction in generalized linear models
This paper presents an integrated framework for estimation and inference from generalized linear models using adjusted score equations that result in mean and median bias reduction. The framework unifies theoretical and methodological aspects of past research on mean bias reduction and accommodates,...
Gespeichert in:
Veröffentlicht in: | Statistics and computing 2020-02, Vol.30 (1), p.43-59 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 59 |
---|---|
container_issue | 1 |
container_start_page | 43 |
container_title | Statistics and computing |
container_volume | 30 |
creator | Kosmidis, Ioannis Kenne Pagui, Euloge Clovis Sartori, Nicola |
description | This paper presents an integrated framework for estimation and inference from generalized linear models using adjusted score equations that result in mean and median bias reduction. The framework unifies theoretical and methodological aspects of past research on mean bias reduction and accommodates, in a natural way, new advances on median bias reduction. General expressions for the adjusted score functions are derived in terms of quantities that are readily available in standard software for fitting generalized linear models. The resulting estimating equations are solved using a unifying quasi-Fisher scoring algorithm that is shown to be equivalent to iteratively reweighted least squares with appropriately adjusted working variates. Formal links between the iterations for mean and median bias reduction are established. Core model invariance properties are used to develop a novel mixed adjustment strategy when the estimation of a dispersion parameter is necessary. It is also shown how median bias reduction in multinomial logistic regression can be done using the equivalent Poisson log-linear model. The estimates coming out from mean and median bias reduction are found to overcome practical issues related to infinite estimates that can occur with positive probability in generalized linear models with multinomial or discrete responses, and can result in valid inferences even in the presence of a high-dimensional nuisance parameter. |
doi_str_mv | 10.1007/s11222-019-09860-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2348263370</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2348263370</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-fb07f47665bbcc9d1fe3107189f599d7aca5e1f70547233f590773d82bc3246a3</originalsourceid><addsrcrecordid>eNp9kEFLAzEUhIMoWKt_wNOC59X3kmyywZMUrULFi55DdpOUlG22Ju1Bf73RFbx5esMwMw8-Qi4RrhFA3mRESmkNqGpQrYBaHJEZNpLVyGRzTGagislQ8lNylvMGAFEwPiO3z87EykRbbZ0NRXbB5Co5e-j3YYxViNXaRZfMED6drYYQnUnVdrRuyOfkxJshu4vfOydvD_evi8d69bJ8Wtyt6p5Tta99B9JzKUTTdX2vLHrHECS2yjdKWWl60zj0EhouKWPFBCmZbWnXM8qFYXNyNe3u0vh-cHmvN-MhxfJSU8ZbKhiTUFJ0SvVpzDk5r3cpbE360Aj6G5KeIOkCSf9A0qKU2FTKJRzXLv1N_9P6ArtraHg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2348263370</pqid></control><display><type>article</type><title>Mean and median bias reduction in generalized linear models</title><source>SpringerLink Journals - AutoHoldings</source><creator>Kosmidis, Ioannis ; Kenne Pagui, Euloge Clovis ; Sartori, Nicola</creator><creatorcontrib>Kosmidis, Ioannis ; Kenne Pagui, Euloge Clovis ; Sartori, Nicola</creatorcontrib><description>This paper presents an integrated framework for estimation and inference from generalized linear models using adjusted score equations that result in mean and median bias reduction. The framework unifies theoretical and methodological aspects of past research on mean bias reduction and accommodates, in a natural way, new advances on median bias reduction. General expressions for the adjusted score functions are derived in terms of quantities that are readily available in standard software for fitting generalized linear models. The resulting estimating equations are solved using a unifying quasi-Fisher scoring algorithm that is shown to be equivalent to iteratively reweighted least squares with appropriately adjusted working variates. Formal links between the iterations for mean and median bias reduction are established. Core model invariance properties are used to develop a novel mixed adjustment strategy when the estimation of a dispersion parameter is necessary. It is also shown how median bias reduction in multinomial logistic regression can be done using the equivalent Poisson log-linear model. The estimates coming out from mean and median bias reduction are found to overcome practical issues related to infinite estimates that can occur with positive probability in generalized linear models with multinomial or discrete responses, and can result in valid inferences even in the presence of a high-dimensional nuisance parameter.</description><identifier>ISSN: 0960-3174</identifier><identifier>EISSN: 1573-1375</identifier><identifier>DOI: 10.1007/s11222-019-09860-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Artificial Intelligence ; Bias ; Equivalence ; Generalized linear models ; Mathematics and Statistics ; Parameter estimation ; Probability and Statistics in Computer Science ; Reduction ; Statistical analysis ; Statistical models ; Statistical Theory and Methods ; Statistics ; Statistics and Computing/Statistics Programs</subject><ispartof>Statistics and computing, 2020-02, Vol.30 (1), p.43-59</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-fb07f47665bbcc9d1fe3107189f599d7aca5e1f70547233f590773d82bc3246a3</citedby><cites>FETCH-LOGICAL-c429t-fb07f47665bbcc9d1fe3107189f599d7aca5e1f70547233f590773d82bc3246a3</cites><orcidid>0000-0003-1556-0302 ; 0000-0002-8998-9251 ; 0000-0002-3063-8385</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11222-019-09860-6$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11222-019-09860-6$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Kosmidis, Ioannis</creatorcontrib><creatorcontrib>Kenne Pagui, Euloge Clovis</creatorcontrib><creatorcontrib>Sartori, Nicola</creatorcontrib><title>Mean and median bias reduction in generalized linear models</title><title>Statistics and computing</title><addtitle>Stat Comput</addtitle><description>This paper presents an integrated framework for estimation and inference from generalized linear models using adjusted score equations that result in mean and median bias reduction. The framework unifies theoretical and methodological aspects of past research on mean bias reduction and accommodates, in a natural way, new advances on median bias reduction. General expressions for the adjusted score functions are derived in terms of quantities that are readily available in standard software for fitting generalized linear models. The resulting estimating equations are solved using a unifying quasi-Fisher scoring algorithm that is shown to be equivalent to iteratively reweighted least squares with appropriately adjusted working variates. Formal links between the iterations for mean and median bias reduction are established. Core model invariance properties are used to develop a novel mixed adjustment strategy when the estimation of a dispersion parameter is necessary. It is also shown how median bias reduction in multinomial logistic regression can be done using the equivalent Poisson log-linear model. The estimates coming out from mean and median bias reduction are found to overcome practical issues related to infinite estimates that can occur with positive probability in generalized linear models with multinomial or discrete responses, and can result in valid inferences even in the presence of a high-dimensional nuisance parameter.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Bias</subject><subject>Equivalence</subject><subject>Generalized linear models</subject><subject>Mathematics and Statistics</subject><subject>Parameter estimation</subject><subject>Probability and Statistics in Computer Science</subject><subject>Reduction</subject><subject>Statistical analysis</subject><subject>Statistical models</subject><subject>Statistical Theory and Methods</subject><subject>Statistics</subject><subject>Statistics and Computing/Statistics Programs</subject><issn>0960-3174</issn><issn>1573-1375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kEFLAzEUhIMoWKt_wNOC59X3kmyywZMUrULFi55DdpOUlG22Ju1Bf73RFbx5esMwMw8-Qi4RrhFA3mRESmkNqGpQrYBaHJEZNpLVyGRzTGagislQ8lNylvMGAFEwPiO3z87EykRbbZ0NRXbB5Co5e-j3YYxViNXaRZfMED6drYYQnUnVdrRuyOfkxJshu4vfOydvD_evi8d69bJ8Wtyt6p5Tta99B9JzKUTTdX2vLHrHECS2yjdKWWl60zj0EhouKWPFBCmZbWnXM8qFYXNyNe3u0vh-cHmvN-MhxfJSU8ZbKhiTUFJ0SvVpzDk5r3cpbE360Aj6G5KeIOkCSf9A0qKU2FTKJRzXLv1N_9P6ArtraHg</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Kosmidis, Ioannis</creator><creator>Kenne Pagui, Euloge Clovis</creator><creator>Sartori, Nicola</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1556-0302</orcidid><orcidid>https://orcid.org/0000-0002-8998-9251</orcidid><orcidid>https://orcid.org/0000-0002-3063-8385</orcidid></search><sort><creationdate>20200201</creationdate><title>Mean and median bias reduction in generalized linear models</title><author>Kosmidis, Ioannis ; Kenne Pagui, Euloge Clovis ; Sartori, Nicola</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-fb07f47665bbcc9d1fe3107189f599d7aca5e1f70547233f590773d82bc3246a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Bias</topic><topic>Equivalence</topic><topic>Generalized linear models</topic><topic>Mathematics and Statistics</topic><topic>Parameter estimation</topic><topic>Probability and Statistics in Computer Science</topic><topic>Reduction</topic><topic>Statistical analysis</topic><topic>Statistical models</topic><topic>Statistical Theory and Methods</topic><topic>Statistics</topic><topic>Statistics and Computing/Statistics Programs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kosmidis, Ioannis</creatorcontrib><creatorcontrib>Kenne Pagui, Euloge Clovis</creatorcontrib><creatorcontrib>Sartori, Nicola</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Statistics and computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kosmidis, Ioannis</au><au>Kenne Pagui, Euloge Clovis</au><au>Sartori, Nicola</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mean and median bias reduction in generalized linear models</atitle><jtitle>Statistics and computing</jtitle><stitle>Stat Comput</stitle><date>2020-02-01</date><risdate>2020</risdate><volume>30</volume><issue>1</issue><spage>43</spage><epage>59</epage><pages>43-59</pages><issn>0960-3174</issn><eissn>1573-1375</eissn><abstract>This paper presents an integrated framework for estimation and inference from generalized linear models using adjusted score equations that result in mean and median bias reduction. The framework unifies theoretical and methodological aspects of past research on mean bias reduction and accommodates, in a natural way, new advances on median bias reduction. General expressions for the adjusted score functions are derived in terms of quantities that are readily available in standard software for fitting generalized linear models. The resulting estimating equations are solved using a unifying quasi-Fisher scoring algorithm that is shown to be equivalent to iteratively reweighted least squares with appropriately adjusted working variates. Formal links between the iterations for mean and median bias reduction are established. Core model invariance properties are used to develop a novel mixed adjustment strategy when the estimation of a dispersion parameter is necessary. It is also shown how median bias reduction in multinomial logistic regression can be done using the equivalent Poisson log-linear model. The estimates coming out from mean and median bias reduction are found to overcome practical issues related to infinite estimates that can occur with positive probability in generalized linear models with multinomial or discrete responses, and can result in valid inferences even in the presence of a high-dimensional nuisance parameter.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11222-019-09860-6</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-1556-0302</orcidid><orcidid>https://orcid.org/0000-0002-8998-9251</orcidid><orcidid>https://orcid.org/0000-0002-3063-8385</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-3174 |
ispartof | Statistics and computing, 2020-02, Vol.30 (1), p.43-59 |
issn | 0960-3174 1573-1375 |
language | eng |
recordid | cdi_proquest_journals_2348263370 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algorithms Artificial Intelligence Bias Equivalence Generalized linear models Mathematics and Statistics Parameter estimation Probability and Statistics in Computer Science Reduction Statistical analysis Statistical models Statistical Theory and Methods Statistics Statistics and Computing/Statistics Programs |
title | Mean and median bias reduction in generalized linear models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T21%3A23%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mean%20and%20median%20bias%20reduction%20in%20generalized%20linear%20models&rft.jtitle=Statistics%20and%20computing&rft.au=Kosmidis,%20Ioannis&rft.date=2020-02-01&rft.volume=30&rft.issue=1&rft.spage=43&rft.epage=59&rft.pages=43-59&rft.issn=0960-3174&rft.eissn=1573-1375&rft_id=info:doi/10.1007/s11222-019-09860-6&rft_dat=%3Cproquest_cross%3E2348263370%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2348263370&rft_id=info:pmid/&rfr_iscdi=true |