Pyrolysis model development for a polymeric material containing multiple flame retardants: Relationship between heat release rate and material composition

This work details an approach to the development of a model of polymeric material fire behavior and its relation to flame retardant content. This approach employs a new controlled atmosphere pyrolysis apparatus to measure mass loss rate, back surface temperature, and sample shape profile evolution f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Combustion and flame 2019-04, Vol.202, p.43-57
Hauptverfasser: Ding, Yan, Stoliarov, Stanislav I., Kraemer, Roland H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 57
container_issue
container_start_page 43
container_title Combustion and flame
container_volume 202
creator Ding, Yan
Stoliarov, Stanislav I.
Kraemer, Roland H.
description This work details an approach to the development of a model of polymeric material fire behavior and its relation to flame retardant content. This approach employs a new controlled atmosphere pyrolysis apparatus to measure mass loss rate, back surface temperature, and sample shape profile evolution for 0.07-m-diameter disk-shaped samples exposed to well-defined radiant heating. Interpretation of these measurements using a thermal decomposition reaction mechanism, derived from thermal analysis experiments, and a numerical pyrolysis model, ThermaKin, yields properties that define heat and mass transport in the pyrolyzing solids. In the current study, this approach was extended to the analysis of flame retardant materials and applied to a set of materials comprised of glass-fiber-reinforced polybutylene terephthalate blended with aluminum diethyl phosphinate and melamine polyphosphate. Additionally, this work found evidence of so-called “wick” effect through which the molten polymer, when blended with glass fiber, was observed to be transported from regions of higher concentration to regions of lower concentration. Incorporation of the wick effect into the pyrolysis model was required to correctly capture the pyrolysis dynamics. The resulting pyrolysis model was found to be capable of predicting mass loss rate data as a function of material composition and external radiative heat fluxes ranging from 30 to 60 kW m−2 with an average error of 15%. Using heats of complete combustion of gaseous decomposition products determined in an earlier work, idealized cone calorimetry simulations were conducted to show that, when the gas-phase combustion inhibition effect is excluded, aluminum diethyl phosphinate has a relatively minor impact on the heat release rate, while the impact of melamine polyphosphate is significant. This work demonstrates, for the first time, that it is possible to establish a quantitative relation between the burning rate and material composition and thus, enables intelligent design of flame retardant materials tailored for specific applications.
doi_str_mv 10.1016/j.combustflame.2019.01.003
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2348252146</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010218019300136</els_id><sourcerecordid>2348252146</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-f7a4e480c1a27e3a7772842756d06f578eae76a3b9c35bfe81f773f96fbf96463</originalsourceid><addsrcrecordid>eNqNkU1v1DAQhiNUJLaF_2C15wR_JHG2N1QoIFUCIThbE2dMvfJHsL1F-1f4tXi7PfTYy8xhnvedGb1Nc8loxygb3-86Hf28z8U48NhxyrYdZR2l4lWzYcMwtnzL2VmzoZTRlrOJvmnOc95RSmUvxKb59_2Qojtkm4mPCzqy4AO6uHoMhZiYCJC1zj0mq4mHUjs4omMoYIMNv4nfu2JXh-TxApKwQFoglHxNfqCDYmPI93YlM5a_iIHcI5RKOYRc6WpIICzPnf0asz3K3javDbiM7576RfPr9tPPmy_t3bfPX28-3LW670VpjYQe-4lqBlyiACkln3ouh3GhoxnkhIByBDFvtRhmgxMzUgqzHc1cSz-Ki-bq5Lum-GePuahd3KdQVyou-okPnD1S1ydKp5hzQqPWZD2kg2JUHbNQO_U8C3XMQlGmahZV_PEkxvrHg8WksrYYNC42oS5qifYlNv8Bd8qeTQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2348252146</pqid></control><display><type>article</type><title>Pyrolysis model development for a polymeric material containing multiple flame retardants: Relationship between heat release rate and material composition</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Ding, Yan ; Stoliarov, Stanislav I. ; Kraemer, Roland H.</creator><creatorcontrib>Ding, Yan ; Stoliarov, Stanislav I. ; Kraemer, Roland H.</creatorcontrib><description>This work details an approach to the development of a model of polymeric material fire behavior and its relation to flame retardant content. This approach employs a new controlled atmosphere pyrolysis apparatus to measure mass loss rate, back surface temperature, and sample shape profile evolution for 0.07-m-diameter disk-shaped samples exposed to well-defined radiant heating. Interpretation of these measurements using a thermal decomposition reaction mechanism, derived from thermal analysis experiments, and a numerical pyrolysis model, ThermaKin, yields properties that define heat and mass transport in the pyrolyzing solids. In the current study, this approach was extended to the analysis of flame retardant materials and applied to a set of materials comprised of glass-fiber-reinforced polybutylene terephthalate blended with aluminum diethyl phosphinate and melamine polyphosphate. Additionally, this work found evidence of so-called “wick” effect through which the molten polymer, when blended with glass fiber, was observed to be transported from regions of higher concentration to regions of lower concentration. Incorporation of the wick effect into the pyrolysis model was required to correctly capture the pyrolysis dynamics. The resulting pyrolysis model was found to be capable of predicting mass loss rate data as a function of material composition and external radiative heat fluxes ranging from 30 to 60 kW m−2 with an average error of 15%. Using heats of complete combustion of gaseous decomposition products determined in an earlier work, idealized cone calorimetry simulations were conducted to show that, when the gas-phase combustion inhibition effect is excluded, aluminum diethyl phosphinate has a relatively minor impact on the heat release rate, while the impact of melamine polyphosphate is significant. This work demonstrates, for the first time, that it is possible to establish a quantitative relation between the burning rate and material composition and thus, enables intelligent design of flame retardant materials tailored for specific applications.</description><identifier>ISSN: 0010-2180</identifier><identifier>EISSN: 1556-2921</identifier><identifier>DOI: 10.1016/j.combustflame.2019.01.003</identifier><language>eng</language><publisher>New York: Elsevier Inc</publisher><subject>Aluminum ; Aluminum diethyl phosphinate ; Burning rate ; Combustion ; Composition ; Computer simulation ; Decomposition reactions ; Diameters ; Fiber reinforced materials ; Fire resistant materials ; Flame retardants ; Glass fiber reinforced plastics ; Heat flux ; Heat release rate ; Material flammability ; Melamine ; Melamine polyphosphate ; Polybutylene terephthalate ; Polybutylene terephthalates ; Polymer combustion ; Pyrolysis ; Pyrolysis modeling ; Radiant heating ; Reaction mechanisms ; Terephthalate ; Thermal analysis ; Thermal decomposition</subject><ispartof>Combustion and flame, 2019-04, Vol.202, p.43-57</ispartof><rights>2019 The Combustion Institute</rights><rights>Copyright Elsevier BV Apr 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-f7a4e480c1a27e3a7772842756d06f578eae76a3b9c35bfe81f773f96fbf96463</citedby><cites>FETCH-LOGICAL-c443t-f7a4e480c1a27e3a7772842756d06f578eae76a3b9c35bfe81f773f96fbf96463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.combustflame.2019.01.003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Ding, Yan</creatorcontrib><creatorcontrib>Stoliarov, Stanislav I.</creatorcontrib><creatorcontrib>Kraemer, Roland H.</creatorcontrib><title>Pyrolysis model development for a polymeric material containing multiple flame retardants: Relationship between heat release rate and material composition</title><title>Combustion and flame</title><description>This work details an approach to the development of a model of polymeric material fire behavior and its relation to flame retardant content. This approach employs a new controlled atmosphere pyrolysis apparatus to measure mass loss rate, back surface temperature, and sample shape profile evolution for 0.07-m-diameter disk-shaped samples exposed to well-defined radiant heating. Interpretation of these measurements using a thermal decomposition reaction mechanism, derived from thermal analysis experiments, and a numerical pyrolysis model, ThermaKin, yields properties that define heat and mass transport in the pyrolyzing solids. In the current study, this approach was extended to the analysis of flame retardant materials and applied to a set of materials comprised of glass-fiber-reinforced polybutylene terephthalate blended with aluminum diethyl phosphinate and melamine polyphosphate. Additionally, this work found evidence of so-called “wick” effect through which the molten polymer, when blended with glass fiber, was observed to be transported from regions of higher concentration to regions of lower concentration. Incorporation of the wick effect into the pyrolysis model was required to correctly capture the pyrolysis dynamics. The resulting pyrolysis model was found to be capable of predicting mass loss rate data as a function of material composition and external radiative heat fluxes ranging from 30 to 60 kW m−2 with an average error of 15%. Using heats of complete combustion of gaseous decomposition products determined in an earlier work, idealized cone calorimetry simulations were conducted to show that, when the gas-phase combustion inhibition effect is excluded, aluminum diethyl phosphinate has a relatively minor impact on the heat release rate, while the impact of melamine polyphosphate is significant. This work demonstrates, for the first time, that it is possible to establish a quantitative relation between the burning rate and material composition and thus, enables intelligent design of flame retardant materials tailored for specific applications.</description><subject>Aluminum</subject><subject>Aluminum diethyl phosphinate</subject><subject>Burning rate</subject><subject>Combustion</subject><subject>Composition</subject><subject>Computer simulation</subject><subject>Decomposition reactions</subject><subject>Diameters</subject><subject>Fiber reinforced materials</subject><subject>Fire resistant materials</subject><subject>Flame retardants</subject><subject>Glass fiber reinforced plastics</subject><subject>Heat flux</subject><subject>Heat release rate</subject><subject>Material flammability</subject><subject>Melamine</subject><subject>Melamine polyphosphate</subject><subject>Polybutylene terephthalate</subject><subject>Polybutylene terephthalates</subject><subject>Polymer combustion</subject><subject>Pyrolysis</subject><subject>Pyrolysis modeling</subject><subject>Radiant heating</subject><subject>Reaction mechanisms</subject><subject>Terephthalate</subject><subject>Thermal analysis</subject><subject>Thermal decomposition</subject><issn>0010-2180</issn><issn>1556-2921</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNkU1v1DAQhiNUJLaF_2C15wR_JHG2N1QoIFUCIThbE2dMvfJHsL1F-1f4tXi7PfTYy8xhnvedGb1Nc8loxygb3-86Hf28z8U48NhxyrYdZR2l4lWzYcMwtnzL2VmzoZTRlrOJvmnOc95RSmUvxKb59_2Qojtkm4mPCzqy4AO6uHoMhZiYCJC1zj0mq4mHUjs4omMoYIMNv4nfu2JXh-TxApKwQFoglHxNfqCDYmPI93YlM5a_iIHcI5RKOYRc6WpIICzPnf0asz3K3javDbiM7576RfPr9tPPmy_t3bfPX28-3LW670VpjYQe-4lqBlyiACkln3ouh3GhoxnkhIByBDFvtRhmgxMzUgqzHc1cSz-Ki-bq5Lum-GePuahd3KdQVyou-okPnD1S1ydKp5hzQqPWZD2kg2JUHbNQO_U8C3XMQlGmahZV_PEkxvrHg8WksrYYNC42oS5qifYlNv8Bd8qeTQ</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Ding, Yan</creator><creator>Stoliarov, Stanislav I.</creator><creator>Kraemer, Roland H.</creator><general>Elsevier Inc</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20190401</creationdate><title>Pyrolysis model development for a polymeric material containing multiple flame retardants: Relationship between heat release rate and material composition</title><author>Ding, Yan ; Stoliarov, Stanislav I. ; Kraemer, Roland H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-f7a4e480c1a27e3a7772842756d06f578eae76a3b9c35bfe81f773f96fbf96463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aluminum</topic><topic>Aluminum diethyl phosphinate</topic><topic>Burning rate</topic><topic>Combustion</topic><topic>Composition</topic><topic>Computer simulation</topic><topic>Decomposition reactions</topic><topic>Diameters</topic><topic>Fiber reinforced materials</topic><topic>Fire resistant materials</topic><topic>Flame retardants</topic><topic>Glass fiber reinforced plastics</topic><topic>Heat flux</topic><topic>Heat release rate</topic><topic>Material flammability</topic><topic>Melamine</topic><topic>Melamine polyphosphate</topic><topic>Polybutylene terephthalate</topic><topic>Polybutylene terephthalates</topic><topic>Polymer combustion</topic><topic>Pyrolysis</topic><topic>Pyrolysis modeling</topic><topic>Radiant heating</topic><topic>Reaction mechanisms</topic><topic>Terephthalate</topic><topic>Thermal analysis</topic><topic>Thermal decomposition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, Yan</creatorcontrib><creatorcontrib>Stoliarov, Stanislav I.</creatorcontrib><creatorcontrib>Kraemer, Roland H.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Combustion and flame</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, Yan</au><au>Stoliarov, Stanislav I.</au><au>Kraemer, Roland H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pyrolysis model development for a polymeric material containing multiple flame retardants: Relationship between heat release rate and material composition</atitle><jtitle>Combustion and flame</jtitle><date>2019-04-01</date><risdate>2019</risdate><volume>202</volume><spage>43</spage><epage>57</epage><pages>43-57</pages><issn>0010-2180</issn><eissn>1556-2921</eissn><abstract>This work details an approach to the development of a model of polymeric material fire behavior and its relation to flame retardant content. This approach employs a new controlled atmosphere pyrolysis apparatus to measure mass loss rate, back surface temperature, and sample shape profile evolution for 0.07-m-diameter disk-shaped samples exposed to well-defined radiant heating. Interpretation of these measurements using a thermal decomposition reaction mechanism, derived from thermal analysis experiments, and a numerical pyrolysis model, ThermaKin, yields properties that define heat and mass transport in the pyrolyzing solids. In the current study, this approach was extended to the analysis of flame retardant materials and applied to a set of materials comprised of glass-fiber-reinforced polybutylene terephthalate blended with aluminum diethyl phosphinate and melamine polyphosphate. Additionally, this work found evidence of so-called “wick” effect through which the molten polymer, when blended with glass fiber, was observed to be transported from regions of higher concentration to regions of lower concentration. Incorporation of the wick effect into the pyrolysis model was required to correctly capture the pyrolysis dynamics. The resulting pyrolysis model was found to be capable of predicting mass loss rate data as a function of material composition and external radiative heat fluxes ranging from 30 to 60 kW m−2 with an average error of 15%. Using heats of complete combustion of gaseous decomposition products determined in an earlier work, idealized cone calorimetry simulations were conducted to show that, when the gas-phase combustion inhibition effect is excluded, aluminum diethyl phosphinate has a relatively minor impact on the heat release rate, while the impact of melamine polyphosphate is significant. This work demonstrates, for the first time, that it is possible to establish a quantitative relation between the burning rate and material composition and thus, enables intelligent design of flame retardant materials tailored for specific applications.</abstract><cop>New York</cop><pub>Elsevier Inc</pub><doi>10.1016/j.combustflame.2019.01.003</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0010-2180
ispartof Combustion and flame, 2019-04, Vol.202, p.43-57
issn 0010-2180
1556-2921
language eng
recordid cdi_proquest_journals_2348252146
source ScienceDirect Journals (5 years ago - present)
subjects Aluminum
Aluminum diethyl phosphinate
Burning rate
Combustion
Composition
Computer simulation
Decomposition reactions
Diameters
Fiber reinforced materials
Fire resistant materials
Flame retardants
Glass fiber reinforced plastics
Heat flux
Heat release rate
Material flammability
Melamine
Melamine polyphosphate
Polybutylene terephthalate
Polybutylene terephthalates
Polymer combustion
Pyrolysis
Pyrolysis modeling
Radiant heating
Reaction mechanisms
Terephthalate
Thermal analysis
Thermal decomposition
title Pyrolysis model development for a polymeric material containing multiple flame retardants: Relationship between heat release rate and material composition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T16%3A31%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pyrolysis%20model%20development%20for%20a%20polymeric%20material%20containing%20multiple%20flame%20retardants:%20Relationship%20between%20heat%20release%20rate%20and%20material%20composition&rft.jtitle=Combustion%20and%20flame&rft.au=Ding,%20Yan&rft.date=2019-04-01&rft.volume=202&rft.spage=43&rft.epage=57&rft.pages=43-57&rft.issn=0010-2180&rft.eissn=1556-2921&rft_id=info:doi/10.1016/j.combustflame.2019.01.003&rft_dat=%3Cproquest_cross%3E2348252146%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2348252146&rft_id=info:pmid/&rft_els_id=S0010218019300136&rfr_iscdi=true