Prediction of the non-isothermal creep strain of a glassy polymer on the basis of dynamic analysis results
In the present work, the non-isothermal creep response of a glassy polymer was experimentally studied and analyzed theoretically by a viscoelastic model, introduced in previous works. The main concept of this research is the prediction of the non-isothermal creep strain data on the basis of independ...
Gespeichert in:
Veröffentlicht in: | Acta mechanica 2020, Vol.231 (1), p.353-361 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 361 |
---|---|
container_issue | 1 |
container_start_page | 353 |
container_title | Acta mechanica |
container_volume | 231 |
creator | Kontou, E. Spathis, G. |
description | In the present work, the non-isothermal creep response of a glassy polymer was experimentally studied and analyzed theoretically by a viscoelastic model, introduced in previous works. The main concept of this research is the prediction of the non-isothermal creep strain data on the basis of independent experimental results, namely dynamic mechanical analysis and stress–strain results at various temperatures. Two different approaches regarding the non-isothermal constitutive equation were studied, i.e., one established in the literature and the second one based on the assumption that the temperature dependence can be taken into account by utilizing the concept of the reduced time. A quite successful prediction of the non-isothermal creep strain has been achieved. |
doi_str_mv | 10.1007/s00707-019-02545-1 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2348172123</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A612850594</galeid><sourcerecordid>A612850594</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-e761d4cf3935b11e02472cdcad7f91b8ccbb907fa1b90d3bb3e7ed15b39808b63</originalsourceid><addsrcrecordid>eNp9kU9r3DAQxUVoIdu0X6AnQc_eaCTbso_L0vyBheaQnoUkj7davNZW4z3421eOA7kVgUYzvN_wxGPsO4gtCKHvKV9CFwLaQsiqrAq4YRuoc1u3Sn9iGyEEFFWrxS37QnTKndQlbNjpJWEX_BTiyGPPpz_IxzgWgWJ-prMduE-IF05TsuFNYvlxsEQzv8RhPmPimVwwZynQIujm0Z6D53a0w7zMEtJ1mOgr-9zbgfDbe71jvx9-vu6fisOvx-f97lB4VTVTgbqGrvS9alXlAFDIUkvfedvpvgXXeO9cK3RvIZdOOadQYweVU20jGlerO_Zj3XtJ8e8VaTKneE3ZDBmpyga0BKmyaruqjnZAE8Y-5h_6fDrM5uOIfcjzXQ2yqUTVlhmQK-BTJErYm0sKZ5tmA8IsIZg1BJNDMG8hGMiQWiHK4vGI6cPLf6h_lJyLJQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2348172123</pqid></control><display><type>article</type><title>Prediction of the non-isothermal creep strain of a glassy polymer on the basis of dynamic analysis results</title><source>SpringerLink Journals</source><creator>Kontou, E. ; Spathis, G.</creator><creatorcontrib>Kontou, E. ; Spathis, G.</creatorcontrib><description>In the present work, the non-isothermal creep response of a glassy polymer was experimentally studied and analyzed theoretically by a viscoelastic model, introduced in previous works. The main concept of this research is the prediction of the non-isothermal creep strain data on the basis of independent experimental results, namely dynamic mechanical analysis and stress–strain results at various temperatures. Two different approaches regarding the non-isothermal constitutive equation were studied, i.e., one established in the literature and the second one based on the assumption that the temperature dependence can be taken into account by utilizing the concept of the reduced time. A quite successful prediction of the non-isothermal creep strain has been achieved.</description><identifier>ISSN: 0001-5970</identifier><identifier>EISSN: 1619-6937</identifier><identifier>DOI: 10.1007/s00707-019-02545-1</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Analysis ; Classical and Continuum Physics ; Constitutive equations ; Constitutive relationships ; Control ; Creep (materials) ; Dynamic mechanical analysis ; Dynamical Systems ; Engineering ; Engineering Fluid Dynamics ; Engineering Thermodynamics ; Heat and Mass Transfer ; Original Paper ; Polymer industry ; Polymers ; Solid Mechanics ; Strain analysis ; Temperature dependence ; Theoretical and Applied Mechanics ; Vibration</subject><ispartof>Acta mechanica, 2020, Vol.231 (1), p.353-361</ispartof><rights>Springer-Verlag GmbH Austria, part of Springer Nature 2019</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Acta Mechanica is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-e761d4cf3935b11e02472cdcad7f91b8ccbb907fa1b90d3bb3e7ed15b39808b63</citedby><cites>FETCH-LOGICAL-c358t-e761d4cf3935b11e02472cdcad7f91b8ccbb907fa1b90d3bb3e7ed15b39808b63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00707-019-02545-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00707-019-02545-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Kontou, E.</creatorcontrib><creatorcontrib>Spathis, G.</creatorcontrib><title>Prediction of the non-isothermal creep strain of a glassy polymer on the basis of dynamic analysis results</title><title>Acta mechanica</title><addtitle>Acta Mech</addtitle><description>In the present work, the non-isothermal creep response of a glassy polymer was experimentally studied and analyzed theoretically by a viscoelastic model, introduced in previous works. The main concept of this research is the prediction of the non-isothermal creep strain data on the basis of independent experimental results, namely dynamic mechanical analysis and stress–strain results at various temperatures. Two different approaches regarding the non-isothermal constitutive equation were studied, i.e., one established in the literature and the second one based on the assumption that the temperature dependence can be taken into account by utilizing the concept of the reduced time. A quite successful prediction of the non-isothermal creep strain has been achieved.</description><subject>Analysis</subject><subject>Classical and Continuum Physics</subject><subject>Constitutive equations</subject><subject>Constitutive relationships</subject><subject>Control</subject><subject>Creep (materials)</subject><subject>Dynamic mechanical analysis</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Engineering Thermodynamics</subject><subject>Heat and Mass Transfer</subject><subject>Original Paper</subject><subject>Polymer industry</subject><subject>Polymers</subject><subject>Solid Mechanics</subject><subject>Strain analysis</subject><subject>Temperature dependence</subject><subject>Theoretical and Applied Mechanics</subject><subject>Vibration</subject><issn>0001-5970</issn><issn>1619-6937</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kU9r3DAQxUVoIdu0X6AnQc_eaCTbso_L0vyBheaQnoUkj7davNZW4z3421eOA7kVgUYzvN_wxGPsO4gtCKHvKV9CFwLaQsiqrAq4YRuoc1u3Sn9iGyEEFFWrxS37QnTKndQlbNjpJWEX_BTiyGPPpz_IxzgWgWJ-prMduE-IF05TsuFNYvlxsEQzv8RhPmPimVwwZynQIujm0Z6D53a0w7zMEtJ1mOgr-9zbgfDbe71jvx9-vu6fisOvx-f97lB4VTVTgbqGrvS9alXlAFDIUkvfedvpvgXXeO9cK3RvIZdOOadQYweVU20jGlerO_Zj3XtJ8e8VaTKneE3ZDBmpyga0BKmyaruqjnZAE8Y-5h_6fDrM5uOIfcjzXQ2yqUTVlhmQK-BTJErYm0sKZ5tmA8IsIZg1BJNDMG8hGMiQWiHK4vGI6cPLf6h_lJyLJQ</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Kontou, E.</creator><creator>Spathis, G.</creator><general>Springer Vienna</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>2020</creationdate><title>Prediction of the non-isothermal creep strain of a glassy polymer on the basis of dynamic analysis results</title><author>Kontou, E. ; Spathis, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-e761d4cf3935b11e02472cdcad7f91b8ccbb907fa1b90d3bb3e7ed15b39808b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analysis</topic><topic>Classical and Continuum Physics</topic><topic>Constitutive equations</topic><topic>Constitutive relationships</topic><topic>Control</topic><topic>Creep (materials)</topic><topic>Dynamic mechanical analysis</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Engineering Thermodynamics</topic><topic>Heat and Mass Transfer</topic><topic>Original Paper</topic><topic>Polymer industry</topic><topic>Polymers</topic><topic>Solid Mechanics</topic><topic>Strain analysis</topic><topic>Temperature dependence</topic><topic>Theoretical and Applied Mechanics</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kontou, E.</creatorcontrib><creatorcontrib>Spathis, G.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Acta mechanica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kontou, E.</au><au>Spathis, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of the non-isothermal creep strain of a glassy polymer on the basis of dynamic analysis results</atitle><jtitle>Acta mechanica</jtitle><stitle>Acta Mech</stitle><date>2020</date><risdate>2020</risdate><volume>231</volume><issue>1</issue><spage>353</spage><epage>361</epage><pages>353-361</pages><issn>0001-5970</issn><eissn>1619-6937</eissn><abstract>In the present work, the non-isothermal creep response of a glassy polymer was experimentally studied and analyzed theoretically by a viscoelastic model, introduced in previous works. The main concept of this research is the prediction of the non-isothermal creep strain data on the basis of independent experimental results, namely dynamic mechanical analysis and stress–strain results at various temperatures. Two different approaches regarding the non-isothermal constitutive equation were studied, i.e., one established in the literature and the second one based on the assumption that the temperature dependence can be taken into account by utilizing the concept of the reduced time. A quite successful prediction of the non-isothermal creep strain has been achieved.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00707-019-02545-1</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-5970 |
ispartof | Acta mechanica, 2020, Vol.231 (1), p.353-361 |
issn | 0001-5970 1619-6937 |
language | eng |
recordid | cdi_proquest_journals_2348172123 |
source | SpringerLink Journals |
subjects | Analysis Classical and Continuum Physics Constitutive equations Constitutive relationships Control Creep (materials) Dynamic mechanical analysis Dynamical Systems Engineering Engineering Fluid Dynamics Engineering Thermodynamics Heat and Mass Transfer Original Paper Polymer industry Polymers Solid Mechanics Strain analysis Temperature dependence Theoretical and Applied Mechanics Vibration |
title | Prediction of the non-isothermal creep strain of a glassy polymer on the basis of dynamic analysis results |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T12%3A11%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20the%20non-isothermal%20creep%20strain%20of%20a%20glassy%20polymer%20on%20the%20basis%20of%20dynamic%20analysis%20results&rft.jtitle=Acta%20mechanica&rft.au=Kontou,%20E.&rft.date=2020&rft.volume=231&rft.issue=1&rft.spage=353&rft.epage=361&rft.pages=353-361&rft.issn=0001-5970&rft.eissn=1619-6937&rft_id=info:doi/10.1007/s00707-019-02545-1&rft_dat=%3Cgale_proqu%3EA612850594%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2348172123&rft_id=info:pmid/&rft_galeid=A612850594&rfr_iscdi=true |