GRASPA 1.0: GRASPA is a Robot Arm graSping Performance BenchmArk

The use of benchmarks is a widespread and scientifically meaningful practice to validate performance of different approaches to the same task. In the context of robot grasping the use of common object sets has emerged in recent years, however no dominant protocols and metrics to test grasping pipeli...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE robotics and automation letters 2020-04, Vol.5 (2), p.836-843
Hauptverfasser: Bottarel, Fabrizio, Vezzani, Giulia, Pattacini, Ugo, Natale, Lorenzo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 843
container_issue 2
container_start_page 836
container_title IEEE robotics and automation letters
container_volume 5
creator Bottarel, Fabrizio
Vezzani, Giulia
Pattacini, Ugo
Natale, Lorenzo
description The use of benchmarks is a widespread and scientifically meaningful practice to validate performance of different approaches to the same task. In the context of robot grasping the use of common object sets has emerged in recent years, however no dominant protocols and metrics to test grasping pipelines have taken root yet. In this letter, we present version 1.0 of GRASPA, a benchmark to test effectiveness of grasping pipelines on physical robot setups. This approach tackles the complexity of such pipelines by proposing different metrics that account for the features and limits of the test platform. As an example application, we deploy GRASPA on the iCub humanoid robot and use it to benchmark our grasping pipeline. As closing remarks, we discuss how the GRASPA indicators we obtained as outcome can provide insight into how different steps of the pipeline affect the overall grasping performance.
doi_str_mv 10.1109/LRA.2020.2965865
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2348118973</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8957275</ieee_id><sourcerecordid>2348118973</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-ba5b8c9ce8a413272a2d50423deb6b022476050591f197ecc966dbbb7bd1d9003</originalsourceid><addsrcrecordid>eNpNkM9LwzAYhoMoOObugpeA59YvSfPLk3XoFAaOTc8hSdPZaduZbAf_eysb4ul7D8_7fvAgdEkgJwT0zXxZ5hQo5FQLrgQ_QSPKpMyYFOL0Xz5Hk5Q2AEA4lUzzEbqbLcvVosQkh1t8zE3CFi971-9wGVu8jna1bbo1XoRY97G1nQ_4PnT-vS3jxwU6q-1nCpPjHaO3x4fX6VM2f5k9T8t55hlTu8xZ7pTXPihbEEYltbTiUFBWBSccUFpIARy4JjXRMnivhaicc9JVpNIAbIyuD7vb2H_tQ9qZTb-P3fDSUFYoQpSWbKDgQPnYpxRDbbaxaW38NgTMryozqDK_qsxR1VC5OlSaEMIfrjSXVHL2Az_hYHQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2348118973</pqid></control><display><type>article</type><title>GRASPA 1.0: GRASPA is a Robot Arm graSping Performance BenchmArk</title><source>IEEE Electronic Library (IEL)</source><creator>Bottarel, Fabrizio ; Vezzani, Giulia ; Pattacini, Ugo ; Natale, Lorenzo</creator><creatorcontrib>Bottarel, Fabrizio ; Vezzani, Giulia ; Pattacini, Ugo ; Natale, Lorenzo</creatorcontrib><description>The use of benchmarks is a widespread and scientifically meaningful practice to validate performance of different approaches to the same task. In the context of robot grasping the use of common object sets has emerged in recent years, however no dominant protocols and metrics to test grasping pipelines have taken root yet. In this letter, we present version 1.0 of GRASPA, a benchmark to test effectiveness of grasping pipelines on physical robot setups. This approach tackles the complexity of such pipelines by proposing different metrics that account for the features and limits of the test platform. As an example application, we deploy GRASPA on the iCub humanoid robot and use it to benchmark our grasping pipeline. As closing remarks, we discuss how the GRASPA indicators we obtained as outcome can provide insight into how different steps of the pipeline affect the overall grasping performance.</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2020.2965865</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Benchmark testing ; Benchmarks ; Grasping ; Grasping (robotics) ; Humanoid ; Layout ; Measurement ; performance evaluation and benchmarking ; Pipelines ; Protocols ; Robot arms ; Robots</subject><ispartof>IEEE robotics and automation letters, 2020-04, Vol.5 (2), p.836-843</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-ba5b8c9ce8a413272a2d50423deb6b022476050591f197ecc966dbbb7bd1d9003</citedby><cites>FETCH-LOGICAL-c338t-ba5b8c9ce8a413272a2d50423deb6b022476050591f197ecc966dbbb7bd1d9003</cites><orcidid>0000-0002-8777-5233 ; 0000-0002-4151-6447 ; 0000-0002-9377-8553 ; 0000-0001-8754-1632</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8957275$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8957275$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bottarel, Fabrizio</creatorcontrib><creatorcontrib>Vezzani, Giulia</creatorcontrib><creatorcontrib>Pattacini, Ugo</creatorcontrib><creatorcontrib>Natale, Lorenzo</creatorcontrib><title>GRASPA 1.0: GRASPA is a Robot Arm graSping Performance BenchmArk</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>The use of benchmarks is a widespread and scientifically meaningful practice to validate performance of different approaches to the same task. In the context of robot grasping the use of common object sets has emerged in recent years, however no dominant protocols and metrics to test grasping pipelines have taken root yet. In this letter, we present version 1.0 of GRASPA, a benchmark to test effectiveness of grasping pipelines on physical robot setups. This approach tackles the complexity of such pipelines by proposing different metrics that account for the features and limits of the test platform. As an example application, we deploy GRASPA on the iCub humanoid robot and use it to benchmark our grasping pipeline. As closing remarks, we discuss how the GRASPA indicators we obtained as outcome can provide insight into how different steps of the pipeline affect the overall grasping performance.</description><subject>Benchmark testing</subject><subject>Benchmarks</subject><subject>Grasping</subject><subject>Grasping (robotics)</subject><subject>Humanoid</subject><subject>Layout</subject><subject>Measurement</subject><subject>performance evaluation and benchmarking</subject><subject>Pipelines</subject><subject>Protocols</subject><subject>Robot arms</subject><subject>Robots</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM9LwzAYhoMoOObugpeA59YvSfPLk3XoFAaOTc8hSdPZaduZbAf_eysb4ul7D8_7fvAgdEkgJwT0zXxZ5hQo5FQLrgQ_QSPKpMyYFOL0Xz5Hk5Q2AEA4lUzzEbqbLcvVosQkh1t8zE3CFi971-9wGVu8jna1bbo1XoRY97G1nQ_4PnT-vS3jxwU6q-1nCpPjHaO3x4fX6VM2f5k9T8t55hlTu8xZ7pTXPihbEEYltbTiUFBWBSccUFpIARy4JjXRMnivhaicc9JVpNIAbIyuD7vb2H_tQ9qZTb-P3fDSUFYoQpSWbKDgQPnYpxRDbbaxaW38NgTMryozqDK_qsxR1VC5OlSaEMIfrjSXVHL2Az_hYHQ</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Bottarel, Fabrizio</creator><creator>Vezzani, Giulia</creator><creator>Pattacini, Ugo</creator><creator>Natale, Lorenzo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8777-5233</orcidid><orcidid>https://orcid.org/0000-0002-4151-6447</orcidid><orcidid>https://orcid.org/0000-0002-9377-8553</orcidid><orcidid>https://orcid.org/0000-0001-8754-1632</orcidid></search><sort><creationdate>20200401</creationdate><title>GRASPA 1.0: GRASPA is a Robot Arm graSping Performance BenchmArk</title><author>Bottarel, Fabrizio ; Vezzani, Giulia ; Pattacini, Ugo ; Natale, Lorenzo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-ba5b8c9ce8a413272a2d50423deb6b022476050591f197ecc966dbbb7bd1d9003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Benchmark testing</topic><topic>Benchmarks</topic><topic>Grasping</topic><topic>Grasping (robotics)</topic><topic>Humanoid</topic><topic>Layout</topic><topic>Measurement</topic><topic>performance evaluation and benchmarking</topic><topic>Pipelines</topic><topic>Protocols</topic><topic>Robot arms</topic><topic>Robots</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bottarel, Fabrizio</creatorcontrib><creatorcontrib>Vezzani, Giulia</creatorcontrib><creatorcontrib>Pattacini, Ugo</creatorcontrib><creatorcontrib>Natale, Lorenzo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bottarel, Fabrizio</au><au>Vezzani, Giulia</au><au>Pattacini, Ugo</au><au>Natale, Lorenzo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GRASPA 1.0: GRASPA is a Robot Arm graSping Performance BenchmArk</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>5</volume><issue>2</issue><spage>836</spage><epage>843</epage><pages>836-843</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>The use of benchmarks is a widespread and scientifically meaningful practice to validate performance of different approaches to the same task. In the context of robot grasping the use of common object sets has emerged in recent years, however no dominant protocols and metrics to test grasping pipelines have taken root yet. In this letter, we present version 1.0 of GRASPA, a benchmark to test effectiveness of grasping pipelines on physical robot setups. This approach tackles the complexity of such pipelines by proposing different metrics that account for the features and limits of the test platform. As an example application, we deploy GRASPA on the iCub humanoid robot and use it to benchmark our grasping pipeline. As closing remarks, we discuss how the GRASPA indicators we obtained as outcome can provide insight into how different steps of the pipeline affect the overall grasping performance.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2020.2965865</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-8777-5233</orcidid><orcidid>https://orcid.org/0000-0002-4151-6447</orcidid><orcidid>https://orcid.org/0000-0002-9377-8553</orcidid><orcidid>https://orcid.org/0000-0001-8754-1632</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2377-3766
ispartof IEEE robotics and automation letters, 2020-04, Vol.5 (2), p.836-843
issn 2377-3766
2377-3766
language eng
recordid cdi_proquest_journals_2348118973
source IEEE Electronic Library (IEL)
subjects Benchmark testing
Benchmarks
Grasping
Grasping (robotics)
Humanoid
Layout
Measurement
performance evaluation and benchmarking
Pipelines
Protocols
Robot arms
Robots
title GRASPA 1.0: GRASPA is a Robot Arm graSping Performance BenchmArk
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T05%3A46%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GRASPA%201.0:%20GRASPA%20is%20a%20Robot%20Arm%20graSping%20Performance%20BenchmArk&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Bottarel,%20Fabrizio&rft.date=2020-04-01&rft.volume=5&rft.issue=2&rft.spage=836&rft.epage=843&rft.pages=836-843&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2020.2965865&rft_dat=%3Cproquest_RIE%3E2348118973%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2348118973&rft_id=info:pmid/&rft_ieee_id=8957275&rfr_iscdi=true