GRASPA 1.0: GRASPA is a Robot Arm graSping Performance BenchmArk
The use of benchmarks is a widespread and scientifically meaningful practice to validate performance of different approaches to the same task. In the context of robot grasping the use of common object sets has emerged in recent years, however no dominant protocols and metrics to test grasping pipeli...
Gespeichert in:
Veröffentlicht in: | IEEE robotics and automation letters 2020-04, Vol.5 (2), p.836-843 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 843 |
---|---|
container_issue | 2 |
container_start_page | 836 |
container_title | IEEE robotics and automation letters |
container_volume | 5 |
creator | Bottarel, Fabrizio Vezzani, Giulia Pattacini, Ugo Natale, Lorenzo |
description | The use of benchmarks is a widespread and scientifically meaningful practice to validate performance of different approaches to the same task. In the context of robot grasping the use of common object sets has emerged in recent years, however no dominant protocols and metrics to test grasping pipelines have taken root yet. In this letter, we present version 1.0 of GRASPA, a benchmark to test effectiveness of grasping pipelines on physical robot setups. This approach tackles the complexity of such pipelines by proposing different metrics that account for the features and limits of the test platform. As an example application, we deploy GRASPA on the iCub humanoid robot and use it to benchmark our grasping pipeline. As closing remarks, we discuss how the GRASPA indicators we obtained as outcome can provide insight into how different steps of the pipeline affect the overall grasping performance. |
doi_str_mv | 10.1109/LRA.2020.2965865 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2348118973</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8957275</ieee_id><sourcerecordid>2348118973</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-ba5b8c9ce8a413272a2d50423deb6b022476050591f197ecc966dbbb7bd1d9003</originalsourceid><addsrcrecordid>eNpNkM9LwzAYhoMoOObugpeA59YvSfPLk3XoFAaOTc8hSdPZaduZbAf_eysb4ul7D8_7fvAgdEkgJwT0zXxZ5hQo5FQLrgQ_QSPKpMyYFOL0Xz5Hk5Q2AEA4lUzzEbqbLcvVosQkh1t8zE3CFi971-9wGVu8jna1bbo1XoRY97G1nQ_4PnT-vS3jxwU6q-1nCpPjHaO3x4fX6VM2f5k9T8t55hlTu8xZ7pTXPihbEEYltbTiUFBWBSccUFpIARy4JjXRMnivhaicc9JVpNIAbIyuD7vb2H_tQ9qZTb-P3fDSUFYoQpSWbKDgQPnYpxRDbbaxaW38NgTMryozqDK_qsxR1VC5OlSaEMIfrjSXVHL2Az_hYHQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2348118973</pqid></control><display><type>article</type><title>GRASPA 1.0: GRASPA is a Robot Arm graSping Performance BenchmArk</title><source>IEEE Electronic Library (IEL)</source><creator>Bottarel, Fabrizio ; Vezzani, Giulia ; Pattacini, Ugo ; Natale, Lorenzo</creator><creatorcontrib>Bottarel, Fabrizio ; Vezzani, Giulia ; Pattacini, Ugo ; Natale, Lorenzo</creatorcontrib><description>The use of benchmarks is a widespread and scientifically meaningful practice to validate performance of different approaches to the same task. In the context of robot grasping the use of common object sets has emerged in recent years, however no dominant protocols and metrics to test grasping pipelines have taken root yet. In this letter, we present version 1.0 of GRASPA, a benchmark to test effectiveness of grasping pipelines on physical robot setups. This approach tackles the complexity of such pipelines by proposing different metrics that account for the features and limits of the test platform. As an example application, we deploy GRASPA on the iCub humanoid robot and use it to benchmark our grasping pipeline. As closing remarks, we discuss how the GRASPA indicators we obtained as outcome can provide insight into how different steps of the pipeline affect the overall grasping performance.</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2020.2965865</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Benchmark testing ; Benchmarks ; Grasping ; Grasping (robotics) ; Humanoid ; Layout ; Measurement ; performance evaluation and benchmarking ; Pipelines ; Protocols ; Robot arms ; Robots</subject><ispartof>IEEE robotics and automation letters, 2020-04, Vol.5 (2), p.836-843</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-ba5b8c9ce8a413272a2d50423deb6b022476050591f197ecc966dbbb7bd1d9003</citedby><cites>FETCH-LOGICAL-c338t-ba5b8c9ce8a413272a2d50423deb6b022476050591f197ecc966dbbb7bd1d9003</cites><orcidid>0000-0002-8777-5233 ; 0000-0002-4151-6447 ; 0000-0002-9377-8553 ; 0000-0001-8754-1632</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8957275$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8957275$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bottarel, Fabrizio</creatorcontrib><creatorcontrib>Vezzani, Giulia</creatorcontrib><creatorcontrib>Pattacini, Ugo</creatorcontrib><creatorcontrib>Natale, Lorenzo</creatorcontrib><title>GRASPA 1.0: GRASPA is a Robot Arm graSping Performance BenchmArk</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>The use of benchmarks is a widespread and scientifically meaningful practice to validate performance of different approaches to the same task. In the context of robot grasping the use of common object sets has emerged in recent years, however no dominant protocols and metrics to test grasping pipelines have taken root yet. In this letter, we present version 1.0 of GRASPA, a benchmark to test effectiveness of grasping pipelines on physical robot setups. This approach tackles the complexity of such pipelines by proposing different metrics that account for the features and limits of the test platform. As an example application, we deploy GRASPA on the iCub humanoid robot and use it to benchmark our grasping pipeline. As closing remarks, we discuss how the GRASPA indicators we obtained as outcome can provide insight into how different steps of the pipeline affect the overall grasping performance.</description><subject>Benchmark testing</subject><subject>Benchmarks</subject><subject>Grasping</subject><subject>Grasping (robotics)</subject><subject>Humanoid</subject><subject>Layout</subject><subject>Measurement</subject><subject>performance evaluation and benchmarking</subject><subject>Pipelines</subject><subject>Protocols</subject><subject>Robot arms</subject><subject>Robots</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM9LwzAYhoMoOObugpeA59YvSfPLk3XoFAaOTc8hSdPZaduZbAf_eysb4ul7D8_7fvAgdEkgJwT0zXxZ5hQo5FQLrgQ_QSPKpMyYFOL0Xz5Hk5Q2AEA4lUzzEbqbLcvVosQkh1t8zE3CFi971-9wGVu8jna1bbo1XoRY97G1nQ_4PnT-vS3jxwU6q-1nCpPjHaO3x4fX6VM2f5k9T8t55hlTu8xZ7pTXPihbEEYltbTiUFBWBSccUFpIARy4JjXRMnivhaicc9JVpNIAbIyuD7vb2H_tQ9qZTb-P3fDSUFYoQpSWbKDgQPnYpxRDbbaxaW38NgTMryozqDK_qsxR1VC5OlSaEMIfrjSXVHL2Az_hYHQ</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Bottarel, Fabrizio</creator><creator>Vezzani, Giulia</creator><creator>Pattacini, Ugo</creator><creator>Natale, Lorenzo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8777-5233</orcidid><orcidid>https://orcid.org/0000-0002-4151-6447</orcidid><orcidid>https://orcid.org/0000-0002-9377-8553</orcidid><orcidid>https://orcid.org/0000-0001-8754-1632</orcidid></search><sort><creationdate>20200401</creationdate><title>GRASPA 1.0: GRASPA is a Robot Arm graSping Performance BenchmArk</title><author>Bottarel, Fabrizio ; Vezzani, Giulia ; Pattacini, Ugo ; Natale, Lorenzo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-ba5b8c9ce8a413272a2d50423deb6b022476050591f197ecc966dbbb7bd1d9003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Benchmark testing</topic><topic>Benchmarks</topic><topic>Grasping</topic><topic>Grasping (robotics)</topic><topic>Humanoid</topic><topic>Layout</topic><topic>Measurement</topic><topic>performance evaluation and benchmarking</topic><topic>Pipelines</topic><topic>Protocols</topic><topic>Robot arms</topic><topic>Robots</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bottarel, Fabrizio</creatorcontrib><creatorcontrib>Vezzani, Giulia</creatorcontrib><creatorcontrib>Pattacini, Ugo</creatorcontrib><creatorcontrib>Natale, Lorenzo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bottarel, Fabrizio</au><au>Vezzani, Giulia</au><au>Pattacini, Ugo</au><au>Natale, Lorenzo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GRASPA 1.0: GRASPA is a Robot Arm graSping Performance BenchmArk</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>5</volume><issue>2</issue><spage>836</spage><epage>843</epage><pages>836-843</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>The use of benchmarks is a widespread and scientifically meaningful practice to validate performance of different approaches to the same task. In the context of robot grasping the use of common object sets has emerged in recent years, however no dominant protocols and metrics to test grasping pipelines have taken root yet. In this letter, we present version 1.0 of GRASPA, a benchmark to test effectiveness of grasping pipelines on physical robot setups. This approach tackles the complexity of such pipelines by proposing different metrics that account for the features and limits of the test platform. As an example application, we deploy GRASPA on the iCub humanoid robot and use it to benchmark our grasping pipeline. As closing remarks, we discuss how the GRASPA indicators we obtained as outcome can provide insight into how different steps of the pipeline affect the overall grasping performance.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2020.2965865</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-8777-5233</orcidid><orcidid>https://orcid.org/0000-0002-4151-6447</orcidid><orcidid>https://orcid.org/0000-0002-9377-8553</orcidid><orcidid>https://orcid.org/0000-0001-8754-1632</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2377-3766 |
ispartof | IEEE robotics and automation letters, 2020-04, Vol.5 (2), p.836-843 |
issn | 2377-3766 2377-3766 |
language | eng |
recordid | cdi_proquest_journals_2348118973 |
source | IEEE Electronic Library (IEL) |
subjects | Benchmark testing Benchmarks Grasping Grasping (robotics) Humanoid Layout Measurement performance evaluation and benchmarking Pipelines Protocols Robot arms Robots |
title | GRASPA 1.0: GRASPA is a Robot Arm graSping Performance BenchmArk |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T05%3A46%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GRASPA%201.0:%20GRASPA%20is%20a%20Robot%20Arm%20graSping%20Performance%20BenchmArk&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Bottarel,%20Fabrizio&rft.date=2020-04-01&rft.volume=5&rft.issue=2&rft.spage=836&rft.epage=843&rft.pages=836-843&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2020.2965865&rft_dat=%3Cproquest_RIE%3E2348118973%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2348118973&rft_id=info:pmid/&rft_ieee_id=8957275&rfr_iscdi=true |