GN-Net: The Gauss-Newton Loss for Multi-Weather Relocalization
Direct SLAM methods have shown exceptional performance on odometry tasks. However, they are susceptible to dynamic lighting and weather changes while also suffering from a bad initialization on large baselines. To overcome this, we propose GN-Net: a network optimized with the novel Gauss-Newton loss...
Gespeichert in:
Veröffentlicht in: | IEEE robotics and automation letters 2020-04, Vol.5 (2), p.890-897 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 897 |
---|---|
container_issue | 2 |
container_start_page | 890 |
container_title | IEEE robotics and automation letters |
container_volume | 5 |
creator | von Stumberg, Lukas Wenzel, Patrick Khan, Qadeer Cremers, Daniel |
description | Direct SLAM methods have shown exceptional performance on odometry tasks. However, they are susceptible to dynamic lighting and weather changes while also suffering from a bad initialization on large baselines. To overcome this, we propose GN-Net: a network optimized with the novel Gauss-Newton loss for training weather invariant deep features, tailored for direct image alignment. Our network can be trained with pixel correspondences between images taken from different sequences. Experiments on both simulated and real-world datasets demonstrate that our approach is more robust against bad initialization, variations in daytime, and weather changes thereby outperforming state-of-the-art direct and indirect methods. Furthermore, we release an evaluation benchmark for relocalization tracking against different types of weather. Our benchmark is available at https://vision.in.tum.de/ gn-net. |
doi_str_mv | 10.1109/LRA.2020.2965031 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2348114279</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8954808</ieee_id><sourcerecordid>2348114279</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-c2b96811e6376b3e0dea5d86cff3c9251b00e2df90ae1be4c6d03d5f5026cb903</originalsourceid><addsrcrecordid>eNpNkN1LwzAUxYMoOHTvgi8FnztvkiZtfBDG0CnUCWPiY0jbG9ZR15mkiP71ZmyIL_cDzrn38CPkisKEUlC35XI6YcBgwpQUwOkJGTGe5ynPpTz9N5-TsfcbAKCC5VyJEbmfL9IFhrtktcZkbgbv4_oV-m1S9t4ntnfJy9CFNn1HE9bokiV2fW269seEtt9ekjNrOo_jY78gb48Pq9lTWr7On2fTMq2ZoiHWSsmCUpQxRcURGjSiKWRtLa8VE7QCQNZYBQZphVktG-CNsAKYrCsF_ILcHO7uXP85oA960w9uG19qxrN4OWO5iio4qGoXwzu0eufaD-O-NQW9B6UjKL0HpY-gouX6YGkR8U9eKJEVUPBf4SliYA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2348114279</pqid></control><display><type>article</type><title>GN-Net: The Gauss-Newton Loss for Multi-Weather Relocalization</title><source>IEEE Electronic Library (IEL)</source><creator>von Stumberg, Lukas ; Wenzel, Patrick ; Khan, Qadeer ; Cremers, Daniel</creator><creatorcontrib>von Stumberg, Lukas ; Wenzel, Patrick ; Khan, Qadeer ; Cremers, Daniel</creatorcontrib><description>Direct SLAM methods have shown exceptional performance on odometry tasks. However, they are susceptible to dynamic lighting and weather changes while also suffering from a bad initialization on large baselines. To overcome this, we propose GN-Net: a network optimized with the novel Gauss-Newton loss for training weather invariant deep features, tailored for direct image alignment. Our network can be trained with pixel correspondences between images taken from different sequences. Experiments on both simulated and real-world datasets demonstrate that our approach is more robust against bad initialization, variations in daytime, and weather changes thereby outperforming state-of-the-art direct and indirect methods. Furthermore, we release an evaluation benchmark for relocalization tracking against different types of weather. Our benchmark is available at https://vision.in.tum.de/ gn-net.</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2020.2965031</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Benchmark testing ; Benchmarks ; Lighting ; Localization ; Meteorology ; Odometers ; Simultaneous localization and mapping ; SLAM ; Task analysis ; Training ; visual learning ; Visualization ; Weather</subject><ispartof>IEEE robotics and automation letters, 2020-04, Vol.5 (2), p.890-897</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-c2b96811e6376b3e0dea5d86cff3c9251b00e2df90ae1be4c6d03d5f5026cb903</citedby><cites>FETCH-LOGICAL-c291t-c2b96811e6376b3e0dea5d86cff3c9251b00e2df90ae1be4c6d03d5f5026cb903</cites><orcidid>0000-0002-4708-3742 ; 0000-0002-1846-6701 ; 0000-0002-7674-0596</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8954808$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8954808$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>von Stumberg, Lukas</creatorcontrib><creatorcontrib>Wenzel, Patrick</creatorcontrib><creatorcontrib>Khan, Qadeer</creatorcontrib><creatorcontrib>Cremers, Daniel</creatorcontrib><title>GN-Net: The Gauss-Newton Loss for Multi-Weather Relocalization</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>Direct SLAM methods have shown exceptional performance on odometry tasks. However, they are susceptible to dynamic lighting and weather changes while also suffering from a bad initialization on large baselines. To overcome this, we propose GN-Net: a network optimized with the novel Gauss-Newton loss for training weather invariant deep features, tailored for direct image alignment. Our network can be trained with pixel correspondences between images taken from different sequences. Experiments on both simulated and real-world datasets demonstrate that our approach is more robust against bad initialization, variations in daytime, and weather changes thereby outperforming state-of-the-art direct and indirect methods. Furthermore, we release an evaluation benchmark for relocalization tracking against different types of weather. Our benchmark is available at https://vision.in.tum.de/ gn-net.</description><subject>Benchmark testing</subject><subject>Benchmarks</subject><subject>Lighting</subject><subject>Localization</subject><subject>Meteorology</subject><subject>Odometers</subject><subject>Simultaneous localization and mapping</subject><subject>SLAM</subject><subject>Task analysis</subject><subject>Training</subject><subject>visual learning</subject><subject>Visualization</subject><subject>Weather</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkN1LwzAUxYMoOHTvgi8FnztvkiZtfBDG0CnUCWPiY0jbG9ZR15mkiP71ZmyIL_cDzrn38CPkisKEUlC35XI6YcBgwpQUwOkJGTGe5ynPpTz9N5-TsfcbAKCC5VyJEbmfL9IFhrtktcZkbgbv4_oV-m1S9t4ntnfJy9CFNn1HE9bokiV2fW269seEtt9ekjNrOo_jY78gb48Pq9lTWr7On2fTMq2ZoiHWSsmCUpQxRcURGjSiKWRtLa8VE7QCQNZYBQZphVktG-CNsAKYrCsF_ILcHO7uXP85oA960w9uG19qxrN4OWO5iio4qGoXwzu0eufaD-O-NQW9B6UjKL0HpY-gouX6YGkR8U9eKJEVUPBf4SliYA</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>von Stumberg, Lukas</creator><creator>Wenzel, Patrick</creator><creator>Khan, Qadeer</creator><creator>Cremers, Daniel</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4708-3742</orcidid><orcidid>https://orcid.org/0000-0002-1846-6701</orcidid><orcidid>https://orcid.org/0000-0002-7674-0596</orcidid></search><sort><creationdate>20200401</creationdate><title>GN-Net: The Gauss-Newton Loss for Multi-Weather Relocalization</title><author>von Stumberg, Lukas ; Wenzel, Patrick ; Khan, Qadeer ; Cremers, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-c2b96811e6376b3e0dea5d86cff3c9251b00e2df90ae1be4c6d03d5f5026cb903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Benchmark testing</topic><topic>Benchmarks</topic><topic>Lighting</topic><topic>Localization</topic><topic>Meteorology</topic><topic>Odometers</topic><topic>Simultaneous localization and mapping</topic><topic>SLAM</topic><topic>Task analysis</topic><topic>Training</topic><topic>visual learning</topic><topic>Visualization</topic><topic>Weather</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>von Stumberg, Lukas</creatorcontrib><creatorcontrib>Wenzel, Patrick</creatorcontrib><creatorcontrib>Khan, Qadeer</creatorcontrib><creatorcontrib>Cremers, Daniel</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>von Stumberg, Lukas</au><au>Wenzel, Patrick</au><au>Khan, Qadeer</au><au>Cremers, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GN-Net: The Gauss-Newton Loss for Multi-Weather Relocalization</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>5</volume><issue>2</issue><spage>890</spage><epage>897</epage><pages>890-897</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>Direct SLAM methods have shown exceptional performance on odometry tasks. However, they are susceptible to dynamic lighting and weather changes while also suffering from a bad initialization on large baselines. To overcome this, we propose GN-Net: a network optimized with the novel Gauss-Newton loss for training weather invariant deep features, tailored for direct image alignment. Our network can be trained with pixel correspondences between images taken from different sequences. Experiments on both simulated and real-world datasets demonstrate that our approach is more robust against bad initialization, variations in daytime, and weather changes thereby outperforming state-of-the-art direct and indirect methods. Furthermore, we release an evaluation benchmark for relocalization tracking against different types of weather. Our benchmark is available at https://vision.in.tum.de/ gn-net.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2020.2965031</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-4708-3742</orcidid><orcidid>https://orcid.org/0000-0002-1846-6701</orcidid><orcidid>https://orcid.org/0000-0002-7674-0596</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2377-3766 |
ispartof | IEEE robotics and automation letters, 2020-04, Vol.5 (2), p.890-897 |
issn | 2377-3766 2377-3766 |
language | eng |
recordid | cdi_proquest_journals_2348114279 |
source | IEEE Electronic Library (IEL) |
subjects | Benchmark testing Benchmarks Lighting Localization Meteorology Odometers Simultaneous localization and mapping SLAM Task analysis Training visual learning Visualization Weather |
title | GN-Net: The Gauss-Newton Loss for Multi-Weather Relocalization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T02%3A31%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GN-Net:%20The%20Gauss-Newton%20Loss%20for%20Multi-Weather%20Relocalization&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=von%20Stumberg,%20Lukas&rft.date=2020-04-01&rft.volume=5&rft.issue=2&rft.spage=890&rft.epage=897&rft.pages=890-897&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2020.2965031&rft_dat=%3Cproquest_RIE%3E2348114279%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2348114279&rft_id=info:pmid/&rft_ieee_id=8954808&rfr_iscdi=true |