GN-Net: The Gauss-Newton Loss for Multi-Weather Relocalization

Direct SLAM methods have shown exceptional performance on odometry tasks. However, they are susceptible to dynamic lighting and weather changes while also suffering from a bad initialization on large baselines. To overcome this, we propose GN-Net: a network optimized with the novel Gauss-Newton loss...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE robotics and automation letters 2020-04, Vol.5 (2), p.890-897
Hauptverfasser: von Stumberg, Lukas, Wenzel, Patrick, Khan, Qadeer, Cremers, Daniel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 897
container_issue 2
container_start_page 890
container_title IEEE robotics and automation letters
container_volume 5
creator von Stumberg, Lukas
Wenzel, Patrick
Khan, Qadeer
Cremers, Daniel
description Direct SLAM methods have shown exceptional performance on odometry tasks. However, they are susceptible to dynamic lighting and weather changes while also suffering from a bad initialization on large baselines. To overcome this, we propose GN-Net: a network optimized with the novel Gauss-Newton loss for training weather invariant deep features, tailored for direct image alignment. Our network can be trained with pixel correspondences between images taken from different sequences. Experiments on both simulated and real-world datasets demonstrate that our approach is more robust against bad initialization, variations in daytime, and weather changes thereby outperforming state-of-the-art direct and indirect methods. Furthermore, we release an evaluation benchmark for relocalization tracking against different types of weather. Our benchmark is available at https://vision.in.tum.de/ gn-net.
doi_str_mv 10.1109/LRA.2020.2965031
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2348114279</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8954808</ieee_id><sourcerecordid>2348114279</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-c2b96811e6376b3e0dea5d86cff3c9251b00e2df90ae1be4c6d03d5f5026cb903</originalsourceid><addsrcrecordid>eNpNkN1LwzAUxYMoOHTvgi8FnztvkiZtfBDG0CnUCWPiY0jbG9ZR15mkiP71ZmyIL_cDzrn38CPkisKEUlC35XI6YcBgwpQUwOkJGTGe5ynPpTz9N5-TsfcbAKCC5VyJEbmfL9IFhrtktcZkbgbv4_oV-m1S9t4ntnfJy9CFNn1HE9bokiV2fW269seEtt9ekjNrOo_jY78gb48Pq9lTWr7On2fTMq2ZoiHWSsmCUpQxRcURGjSiKWRtLa8VE7QCQNZYBQZphVktG-CNsAKYrCsF_ILcHO7uXP85oA960w9uG19qxrN4OWO5iio4qGoXwzu0eufaD-O-NQW9B6UjKL0HpY-gouX6YGkR8U9eKJEVUPBf4SliYA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2348114279</pqid></control><display><type>article</type><title>GN-Net: The Gauss-Newton Loss for Multi-Weather Relocalization</title><source>IEEE Electronic Library (IEL)</source><creator>von Stumberg, Lukas ; Wenzel, Patrick ; Khan, Qadeer ; Cremers, Daniel</creator><creatorcontrib>von Stumberg, Lukas ; Wenzel, Patrick ; Khan, Qadeer ; Cremers, Daniel</creatorcontrib><description>Direct SLAM methods have shown exceptional performance on odometry tasks. However, they are susceptible to dynamic lighting and weather changes while also suffering from a bad initialization on large baselines. To overcome this, we propose GN-Net: a network optimized with the novel Gauss-Newton loss for training weather invariant deep features, tailored for direct image alignment. Our network can be trained with pixel correspondences between images taken from different sequences. Experiments on both simulated and real-world datasets demonstrate that our approach is more robust against bad initialization, variations in daytime, and weather changes thereby outperforming state-of-the-art direct and indirect methods. Furthermore, we release an evaluation benchmark for relocalization tracking against different types of weather. Our benchmark is available at https://vision.in.tum.de/ gn-net.</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2020.2965031</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Benchmark testing ; Benchmarks ; Lighting ; Localization ; Meteorology ; Odometers ; Simultaneous localization and mapping ; SLAM ; Task analysis ; Training ; visual learning ; Visualization ; Weather</subject><ispartof>IEEE robotics and automation letters, 2020-04, Vol.5 (2), p.890-897</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-c2b96811e6376b3e0dea5d86cff3c9251b00e2df90ae1be4c6d03d5f5026cb903</citedby><cites>FETCH-LOGICAL-c291t-c2b96811e6376b3e0dea5d86cff3c9251b00e2df90ae1be4c6d03d5f5026cb903</cites><orcidid>0000-0002-4708-3742 ; 0000-0002-1846-6701 ; 0000-0002-7674-0596</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8954808$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8954808$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>von Stumberg, Lukas</creatorcontrib><creatorcontrib>Wenzel, Patrick</creatorcontrib><creatorcontrib>Khan, Qadeer</creatorcontrib><creatorcontrib>Cremers, Daniel</creatorcontrib><title>GN-Net: The Gauss-Newton Loss for Multi-Weather Relocalization</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>Direct SLAM methods have shown exceptional performance on odometry tasks. However, they are susceptible to dynamic lighting and weather changes while also suffering from a bad initialization on large baselines. To overcome this, we propose GN-Net: a network optimized with the novel Gauss-Newton loss for training weather invariant deep features, tailored for direct image alignment. Our network can be trained with pixel correspondences between images taken from different sequences. Experiments on both simulated and real-world datasets demonstrate that our approach is more robust against bad initialization, variations in daytime, and weather changes thereby outperforming state-of-the-art direct and indirect methods. Furthermore, we release an evaluation benchmark for relocalization tracking against different types of weather. Our benchmark is available at https://vision.in.tum.de/ gn-net.</description><subject>Benchmark testing</subject><subject>Benchmarks</subject><subject>Lighting</subject><subject>Localization</subject><subject>Meteorology</subject><subject>Odometers</subject><subject>Simultaneous localization and mapping</subject><subject>SLAM</subject><subject>Task analysis</subject><subject>Training</subject><subject>visual learning</subject><subject>Visualization</subject><subject>Weather</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkN1LwzAUxYMoOHTvgi8FnztvkiZtfBDG0CnUCWPiY0jbG9ZR15mkiP71ZmyIL_cDzrn38CPkisKEUlC35XI6YcBgwpQUwOkJGTGe5ynPpTz9N5-TsfcbAKCC5VyJEbmfL9IFhrtktcZkbgbv4_oV-m1S9t4ntnfJy9CFNn1HE9bokiV2fW269seEtt9ekjNrOo_jY78gb48Pq9lTWr7On2fTMq2ZoiHWSsmCUpQxRcURGjSiKWRtLa8VE7QCQNZYBQZphVktG-CNsAKYrCsF_ILcHO7uXP85oA960w9uG19qxrN4OWO5iio4qGoXwzu0eufaD-O-NQW9B6UjKL0HpY-gouX6YGkR8U9eKJEVUPBf4SliYA</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>von Stumberg, Lukas</creator><creator>Wenzel, Patrick</creator><creator>Khan, Qadeer</creator><creator>Cremers, Daniel</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4708-3742</orcidid><orcidid>https://orcid.org/0000-0002-1846-6701</orcidid><orcidid>https://orcid.org/0000-0002-7674-0596</orcidid></search><sort><creationdate>20200401</creationdate><title>GN-Net: The Gauss-Newton Loss for Multi-Weather Relocalization</title><author>von Stumberg, Lukas ; Wenzel, Patrick ; Khan, Qadeer ; Cremers, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-c2b96811e6376b3e0dea5d86cff3c9251b00e2df90ae1be4c6d03d5f5026cb903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Benchmark testing</topic><topic>Benchmarks</topic><topic>Lighting</topic><topic>Localization</topic><topic>Meteorology</topic><topic>Odometers</topic><topic>Simultaneous localization and mapping</topic><topic>SLAM</topic><topic>Task analysis</topic><topic>Training</topic><topic>visual learning</topic><topic>Visualization</topic><topic>Weather</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>von Stumberg, Lukas</creatorcontrib><creatorcontrib>Wenzel, Patrick</creatorcontrib><creatorcontrib>Khan, Qadeer</creatorcontrib><creatorcontrib>Cremers, Daniel</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>von Stumberg, Lukas</au><au>Wenzel, Patrick</au><au>Khan, Qadeer</au><au>Cremers, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GN-Net: The Gauss-Newton Loss for Multi-Weather Relocalization</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>5</volume><issue>2</issue><spage>890</spage><epage>897</epage><pages>890-897</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>Direct SLAM methods have shown exceptional performance on odometry tasks. However, they are susceptible to dynamic lighting and weather changes while also suffering from a bad initialization on large baselines. To overcome this, we propose GN-Net: a network optimized with the novel Gauss-Newton loss for training weather invariant deep features, tailored for direct image alignment. Our network can be trained with pixel correspondences between images taken from different sequences. Experiments on both simulated and real-world datasets demonstrate that our approach is more robust against bad initialization, variations in daytime, and weather changes thereby outperforming state-of-the-art direct and indirect methods. Furthermore, we release an evaluation benchmark for relocalization tracking against different types of weather. Our benchmark is available at https://vision.in.tum.de/ gn-net.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2020.2965031</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-4708-3742</orcidid><orcidid>https://orcid.org/0000-0002-1846-6701</orcidid><orcidid>https://orcid.org/0000-0002-7674-0596</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2377-3766
ispartof IEEE robotics and automation letters, 2020-04, Vol.5 (2), p.890-897
issn 2377-3766
2377-3766
language eng
recordid cdi_proquest_journals_2348114279
source IEEE Electronic Library (IEL)
subjects Benchmark testing
Benchmarks
Lighting
Localization
Meteorology
Odometers
Simultaneous localization and mapping
SLAM
Task analysis
Training
visual learning
Visualization
Weather
title GN-Net: The Gauss-Newton Loss for Multi-Weather Relocalization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T02%3A31%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GN-Net:%20The%20Gauss-Newton%20Loss%20for%20Multi-Weather%20Relocalization&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=von%20Stumberg,%20Lukas&rft.date=2020-04-01&rft.volume=5&rft.issue=2&rft.spage=890&rft.epage=897&rft.pages=890-897&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2020.2965031&rft_dat=%3Cproquest_RIE%3E2348114279%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2348114279&rft_id=info:pmid/&rft_ieee_id=8954808&rfr_iscdi=true