Assessment of Nd1.5Pr0.5Ni1−xMxO4+δ (M = Cu, Co, Mo; x = 0, 0.05 and 0.1) as cathode materials for intermediate-temperature solid oxide fuel cell

This work presents study of the doping effect of M = Cu, Co, and Mo on the cathode properties of Nd 1.5 Pr 0.5 Ni 1− x M x O 4+ δ . In particular, four compositions are prepared by a modified sol–gel method, e.g., Nd 1.5 Pr 0.5 NiO 4+ δ (NPN), Nd 1.5 Pr 0.5 Ni 0.9 Cu 0.1 O 4+ δ (NPNCu), Nd 1.5 Pr 0....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science. Materials in electronics 2020, Vol.31 (2), p.949-958
Hauptverfasser: Zhang, Ting, Zhou, Qingjun, He, Yong, Zhao, Chen, Qi, Siming, Wang, Mingchao, Wei, Tong, An, Dongmin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 958
container_issue 2
container_start_page 949
container_title Journal of materials science. Materials in electronics
container_volume 31
creator Zhang, Ting
Zhou, Qingjun
He, Yong
Zhao, Chen
Qi, Siming
Wang, Mingchao
Wei, Tong
An, Dongmin
description This work presents study of the doping effect of M = Cu, Co, and Mo on the cathode properties of Nd 1.5 Pr 0.5 Ni 1− x M x O 4+ δ . In particular, four compositions are prepared by a modified sol–gel method, e.g., Nd 1.5 Pr 0.5 NiO 4+ δ (NPN), Nd 1.5 Pr 0.5 Ni 0.9 Cu 0.1 O 4+ δ (NPNCu), Nd 1.5 Pr 0.5 Ni 0.9 Co 0.1 O 4+ δ (NPNCo), and Nd 1.5 Pr 0.5 Ni 0.95 Mo 0.05 O 4+ δ (NPNMo). The crystal structure, phase stability, electrical conductivity, thermal expansion coefficient (TEC), and electrochemical performance of the oxides are systematically investigated. No chemical reactions between NPN, NPNCu, NPNCo, and NPNMo cathodes and Ce 0.8 Sm 0.2 O 1.9 electrolyte are found. The average TEC values of the NPN, NPNCu, NPNCo, and NPNMo are determined to be 13.9 × 10 −6 K −1 , 13.6 × 10 −6 K −1 , 14.7 × 10 −6 K −1 , and 13.2 × 10 −6 K −1 in the range of 30–1000 °C, close to that of the typical electrolyte materials. NPN and NPNCu cathodes exhibit very low interfacial polarization resistance value of 0.033 and 0.032 Ω cm 2 at 800 °C, which translates to superior fuel cell performance, e.g., peak power density of 456 and 443 mW cm −2 , respectively. The electrochemical performance, however, could be significantly degraded by the Co and Mo doping in the Ni site. The presented results demonstrate that NPN and NPNCu are promising cathode candidate for intermediate-temperature solid oxide fuel cells.
doi_str_mv 10.1007/s10854-019-02604-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2347879091</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2347879091</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-b24a49613537d4b0acf8357e5b1f632c6305a0f05e39b6b8e478e338e18616573</originalsourceid><addsrcrecordid>eNp9kc1KHEEQx5sQIZvVF_DU4CXB7U3113wQPCxLjILrelDwNvTM1JiRmem1ewbWW4569ZzH8DnyEPsktq6QWw5FffD_VUH9CdnnMOUA8TfPIdGKAU8ZiAgUEx_IiOtYMpWI649kBKmOmdJCfCKfvb8FgEjJZET-zLxH71vsemorel7yqb5wMNXnNd88PK0X66U6_PtMvyw2vx-PQsyHCZ3bCV3Y73T9PoMJhSloaroyFPwrNZ4Wpv9lS6St6dHVpvG0so7WXehaLOswZT22K3SmHxxSb5u6pHZdB6QasKEFNs0u2akCiXvveUyujn9czk_Y2fLn6Xx2xgqh0p7lQhmVRlxqGZcqB1NUidQx6pxXkRRFJEEbqECjTPMoT1DFCUqZIE8iHoUnjcnBdu_K2bsBfZ_d2sF14WQmZBDHKaQ8qMRWVTjrvcMqW7m6Ne4-45C9upBtXciCC9mbC4EeE7mFfBB3N-j-rf4P9QLPc4uE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2347879091</pqid></control><display><type>article</type><title>Assessment of Nd1.5Pr0.5Ni1−xMxO4+δ (M = Cu, Co, Mo; x = 0, 0.05 and 0.1) as cathode materials for intermediate-temperature solid oxide fuel cell</title><source>SpringerLink Journals - AutoHoldings</source><creator>Zhang, Ting ; Zhou, Qingjun ; He, Yong ; Zhao, Chen ; Qi, Siming ; Wang, Mingchao ; Wei, Tong ; An, Dongmin</creator><creatorcontrib>Zhang, Ting ; Zhou, Qingjun ; He, Yong ; Zhao, Chen ; Qi, Siming ; Wang, Mingchao ; Wei, Tong ; An, Dongmin</creatorcontrib><description>This work presents study of the doping effect of M = Cu, Co, and Mo on the cathode properties of Nd 1.5 Pr 0.5 Ni 1− x M x O 4+ δ . In particular, four compositions are prepared by a modified sol–gel method, e.g., Nd 1.5 Pr 0.5 NiO 4+ δ (NPN), Nd 1.5 Pr 0.5 Ni 0.9 Cu 0.1 O 4+ δ (NPNCu), Nd 1.5 Pr 0.5 Ni 0.9 Co 0.1 O 4+ δ (NPNCo), and Nd 1.5 Pr 0.5 Ni 0.95 Mo 0.05 O 4+ δ (NPNMo). The crystal structure, phase stability, electrical conductivity, thermal expansion coefficient (TEC), and electrochemical performance of the oxides are systematically investigated. No chemical reactions between NPN, NPNCu, NPNCo, and NPNMo cathodes and Ce 0.8 Sm 0.2 O 1.9 electrolyte are found. The average TEC values of the NPN, NPNCu, NPNCo, and NPNMo are determined to be 13.9 × 10 −6 K −1 , 13.6 × 10 −6 K −1 , 14.7 × 10 −6 K −1 , and 13.2 × 10 −6 K −1 in the range of 30–1000 °C, close to that of the typical electrolyte materials. NPN and NPNCu cathodes exhibit very low interfacial polarization resistance value of 0.033 and 0.032 Ω cm 2 at 800 °C, which translates to superior fuel cell performance, e.g., peak power density of 456 and 443 mW cm −2 , respectively. The electrochemical performance, however, could be significantly degraded by the Co and Mo doping in the Ni site. The presented results demonstrate that NPN and NPNCu are promising cathode candidate for intermediate-temperature solid oxide fuel cells.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-019-02604-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Cathodes ; Cathodic polarization ; Characterization and Evaluation of Materials ; Chemical reactions ; Chemistry and Materials Science ; Copper ; Crystal structure ; Doping ; Electrical resistivity ; Electrochemical analysis ; Electrode materials ; Electrode polarization ; Electrolytes ; Electrolytic cells ; Fuel cells ; Materials Science ; Molybdenum ; Nickel ; Optical and Electronic Materials ; Organic chemistry ; Phase stability ; Sol-gel processes ; Solid oxide fuel cells ; Structural stability ; Thermal expansion</subject><ispartof>Journal of materials science. Materials in electronics, 2020, Vol.31 (2), p.949-958</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Journal of Materials Science: Materials in Electronics is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-b24a49613537d4b0acf8357e5b1f632c6305a0f05e39b6b8e478e338e18616573</citedby><cites>FETCH-LOGICAL-c249t-b24a49613537d4b0acf8357e5b1f632c6305a0f05e39b6b8e478e338e18616573</cites><orcidid>0000-0002-2956-7276</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-019-02604-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-019-02604-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Zhang, Ting</creatorcontrib><creatorcontrib>Zhou, Qingjun</creatorcontrib><creatorcontrib>He, Yong</creatorcontrib><creatorcontrib>Zhao, Chen</creatorcontrib><creatorcontrib>Qi, Siming</creatorcontrib><creatorcontrib>Wang, Mingchao</creatorcontrib><creatorcontrib>Wei, Tong</creatorcontrib><creatorcontrib>An, Dongmin</creatorcontrib><title>Assessment of Nd1.5Pr0.5Ni1−xMxO4+δ (M = Cu, Co, Mo; x = 0, 0.05 and 0.1) as cathode materials for intermediate-temperature solid oxide fuel cell</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>This work presents study of the doping effect of M = Cu, Co, and Mo on the cathode properties of Nd 1.5 Pr 0.5 Ni 1− x M x O 4+ δ . In particular, four compositions are prepared by a modified sol–gel method, e.g., Nd 1.5 Pr 0.5 NiO 4+ δ (NPN), Nd 1.5 Pr 0.5 Ni 0.9 Cu 0.1 O 4+ δ (NPNCu), Nd 1.5 Pr 0.5 Ni 0.9 Co 0.1 O 4+ δ (NPNCo), and Nd 1.5 Pr 0.5 Ni 0.95 Mo 0.05 O 4+ δ (NPNMo). The crystal structure, phase stability, electrical conductivity, thermal expansion coefficient (TEC), and electrochemical performance of the oxides are systematically investigated. No chemical reactions between NPN, NPNCu, NPNCo, and NPNMo cathodes and Ce 0.8 Sm 0.2 O 1.9 electrolyte are found. The average TEC values of the NPN, NPNCu, NPNCo, and NPNMo are determined to be 13.9 × 10 −6 K −1 , 13.6 × 10 −6 K −1 , 14.7 × 10 −6 K −1 , and 13.2 × 10 −6 K −1 in the range of 30–1000 °C, close to that of the typical electrolyte materials. NPN and NPNCu cathodes exhibit very low interfacial polarization resistance value of 0.033 and 0.032 Ω cm 2 at 800 °C, which translates to superior fuel cell performance, e.g., peak power density of 456 and 443 mW cm −2 , respectively. The electrochemical performance, however, could be significantly degraded by the Co and Mo doping in the Ni site. The presented results demonstrate that NPN and NPNCu are promising cathode candidate for intermediate-temperature solid oxide fuel cells.</description><subject>Cathodes</subject><subject>Cathodic polarization</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical reactions</subject><subject>Chemistry and Materials Science</subject><subject>Copper</subject><subject>Crystal structure</subject><subject>Doping</subject><subject>Electrical resistivity</subject><subject>Electrochemical analysis</subject><subject>Electrode materials</subject><subject>Electrode polarization</subject><subject>Electrolytes</subject><subject>Electrolytic cells</subject><subject>Fuel cells</subject><subject>Materials Science</subject><subject>Molybdenum</subject><subject>Nickel</subject><subject>Optical and Electronic Materials</subject><subject>Organic chemistry</subject><subject>Phase stability</subject><subject>Sol-gel processes</subject><subject>Solid oxide fuel cells</subject><subject>Structural stability</subject><subject>Thermal expansion</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kc1KHEEQx5sQIZvVF_DU4CXB7U3113wQPCxLjILrelDwNvTM1JiRmem1ewbWW4569ZzH8DnyEPsktq6QWw5FffD_VUH9CdnnMOUA8TfPIdGKAU8ZiAgUEx_IiOtYMpWI649kBKmOmdJCfCKfvb8FgEjJZET-zLxH71vsemorel7yqb5wMNXnNd88PK0X66U6_PtMvyw2vx-PQsyHCZ3bCV3Y73T9PoMJhSloaroyFPwrNZ4Wpv9lS6St6dHVpvG0so7WXehaLOswZT22K3SmHxxSb5u6pHZdB6QasKEFNs0u2akCiXvveUyujn9czk_Y2fLn6Xx2xgqh0p7lQhmVRlxqGZcqB1NUidQx6pxXkRRFJEEbqECjTPMoT1DFCUqZIE8iHoUnjcnBdu_K2bsBfZ_d2sF14WQmZBDHKaQ8qMRWVTjrvcMqW7m6Ne4-45C9upBtXciCC9mbC4EeE7mFfBB3N-j-rf4P9QLPc4uE</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Zhang, Ting</creator><creator>Zhou, Qingjun</creator><creator>He, Yong</creator><creator>Zhao, Chen</creator><creator>Qi, Siming</creator><creator>Wang, Mingchao</creator><creator>Wei, Tong</creator><creator>An, Dongmin</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-2956-7276</orcidid></search><sort><creationdate>2020</creationdate><title>Assessment of Nd1.5Pr0.5Ni1−xMxO4+δ (M = Cu, Co, Mo; x = 0, 0.05 and 0.1) as cathode materials for intermediate-temperature solid oxide fuel cell</title><author>Zhang, Ting ; Zhou, Qingjun ; He, Yong ; Zhao, Chen ; Qi, Siming ; Wang, Mingchao ; Wei, Tong ; An, Dongmin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-b24a49613537d4b0acf8357e5b1f632c6305a0f05e39b6b8e478e338e18616573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cathodes</topic><topic>Cathodic polarization</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical reactions</topic><topic>Chemistry and Materials Science</topic><topic>Copper</topic><topic>Crystal structure</topic><topic>Doping</topic><topic>Electrical resistivity</topic><topic>Electrochemical analysis</topic><topic>Electrode materials</topic><topic>Electrode polarization</topic><topic>Electrolytes</topic><topic>Electrolytic cells</topic><topic>Fuel cells</topic><topic>Materials Science</topic><topic>Molybdenum</topic><topic>Nickel</topic><topic>Optical and Electronic Materials</topic><topic>Organic chemistry</topic><topic>Phase stability</topic><topic>Sol-gel processes</topic><topic>Solid oxide fuel cells</topic><topic>Structural stability</topic><topic>Thermal expansion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Ting</creatorcontrib><creatorcontrib>Zhou, Qingjun</creatorcontrib><creatorcontrib>He, Yong</creatorcontrib><creatorcontrib>Zhao, Chen</creatorcontrib><creatorcontrib>Qi, Siming</creatorcontrib><creatorcontrib>Wang, Mingchao</creatorcontrib><creatorcontrib>Wei, Tong</creatorcontrib><creatorcontrib>An, Dongmin</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Ting</au><au>Zhou, Qingjun</au><au>He, Yong</au><au>Zhao, Chen</au><au>Qi, Siming</au><au>Wang, Mingchao</au><au>Wei, Tong</au><au>An, Dongmin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessment of Nd1.5Pr0.5Ni1−xMxO4+δ (M = Cu, Co, Mo; x = 0, 0.05 and 0.1) as cathode materials for intermediate-temperature solid oxide fuel cell</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2020</date><risdate>2020</risdate><volume>31</volume><issue>2</issue><spage>949</spage><epage>958</epage><pages>949-958</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>This work presents study of the doping effect of M = Cu, Co, and Mo on the cathode properties of Nd 1.5 Pr 0.5 Ni 1− x M x O 4+ δ . In particular, four compositions are prepared by a modified sol–gel method, e.g., Nd 1.5 Pr 0.5 NiO 4+ δ (NPN), Nd 1.5 Pr 0.5 Ni 0.9 Cu 0.1 O 4+ δ (NPNCu), Nd 1.5 Pr 0.5 Ni 0.9 Co 0.1 O 4+ δ (NPNCo), and Nd 1.5 Pr 0.5 Ni 0.95 Mo 0.05 O 4+ δ (NPNMo). The crystal structure, phase stability, electrical conductivity, thermal expansion coefficient (TEC), and electrochemical performance of the oxides are systematically investigated. No chemical reactions between NPN, NPNCu, NPNCo, and NPNMo cathodes and Ce 0.8 Sm 0.2 O 1.9 electrolyte are found. The average TEC values of the NPN, NPNCu, NPNCo, and NPNMo are determined to be 13.9 × 10 −6 K −1 , 13.6 × 10 −6 K −1 , 14.7 × 10 −6 K −1 , and 13.2 × 10 −6 K −1 in the range of 30–1000 °C, close to that of the typical electrolyte materials. NPN and NPNCu cathodes exhibit very low interfacial polarization resistance value of 0.033 and 0.032 Ω cm 2 at 800 °C, which translates to superior fuel cell performance, e.g., peak power density of 456 and 443 mW cm −2 , respectively. The electrochemical performance, however, could be significantly degraded by the Co and Mo doping in the Ni site. The presented results demonstrate that NPN and NPNCu are promising cathode candidate for intermediate-temperature solid oxide fuel cells.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-019-02604-2</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2956-7276</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-4522
ispartof Journal of materials science. Materials in electronics, 2020, Vol.31 (2), p.949-958
issn 0957-4522
1573-482X
language eng
recordid cdi_proquest_journals_2347879091
source SpringerLink Journals - AutoHoldings
subjects Cathodes
Cathodic polarization
Characterization and Evaluation of Materials
Chemical reactions
Chemistry and Materials Science
Copper
Crystal structure
Doping
Electrical resistivity
Electrochemical analysis
Electrode materials
Electrode polarization
Electrolytes
Electrolytic cells
Fuel cells
Materials Science
Molybdenum
Nickel
Optical and Electronic Materials
Organic chemistry
Phase stability
Sol-gel processes
Solid oxide fuel cells
Structural stability
Thermal expansion
title Assessment of Nd1.5Pr0.5Ni1−xMxO4+δ (M = Cu, Co, Mo; x = 0, 0.05 and 0.1) as cathode materials for intermediate-temperature solid oxide fuel cell
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T17%3A28%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessment%20of%20Nd1.5Pr0.5Ni1%E2%88%92xMxO4+%CE%B4%20(M%E2%80%89=%E2%80%89Cu,%20Co,%20Mo;%20x%E2%80%89=%E2%80%890,%200.05%20and%200.1)%20as%20cathode%20materials%20for%20intermediate-temperature%20solid%20oxide%20fuel%20cell&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Zhang,%20Ting&rft.date=2020&rft.volume=31&rft.issue=2&rft.spage=949&rft.epage=958&rft.pages=949-958&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-019-02604-2&rft_dat=%3Cproquest_cross%3E2347879091%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2347879091&rft_id=info:pmid/&rfr_iscdi=true