Understanding the mechanism of cycling degradation and novel strategy to stabilize the cycling performance of graphite/LiCoO2 battery at high voltage

Interest in wide-operating-voltage lithium-ion batteries is thriving because higher energy density can be enabled by employing higher-voltage cathodes and robust, stable electrolyte system. However, the severe solubilization of cobalt occurred at high cut-off voltage leads to rapid capacity degradat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of electroanalytical chemistry (Lausanne, Switzerland) Switzerland), 2019-10, Vol.851, p.113411, Article 113411
Hauptverfasser: Wang, Zaisheng, Rao, Mumin, Li, Jianhui, Ye, Changchun, Liu, Zidan, Xu, Qingshuai, Jin, Xiaojing, Du, Ruian, Xie, Qiming, Luo, Wen, Li, Weishan, Qiu, Yongcai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 113411
container_title Journal of electroanalytical chemistry (Lausanne, Switzerland)
container_volume 851
creator Wang, Zaisheng
Rao, Mumin
Li, Jianhui
Ye, Changchun
Liu, Zidan
Xu, Qingshuai
Jin, Xiaojing
Du, Ruian
Xie, Qiming
Luo, Wen
Li, Weishan
Qiu, Yongcai
description Interest in wide-operating-voltage lithium-ion batteries is thriving because higher energy density can be enabled by employing higher-voltage cathodes and robust, stable electrolyte system. However, the severe solubilization of cobalt occurred at high cut-off voltage leads to rapid capacity degradation and limited lifespan. Here, we show that 1,3,2-dioxathiolane-2,2-dioxide as electrolyte additive has strong complexation ability to cobalt ions, which can inhibit the direct attack on solid electrolyte interphase films. Through calculation, the additive was proven to possess more negative lowest unoccupied molecular orbital energy than well-studied ethylene carbonate, diethyl carbonate and ethyl methyl carbonate, which facilitates the reduction to form a protective film easily. As results, the LiCoO2/graphite pouch cells with 2 wt% additive cycled at 1C between 3.0 and 4.45 V exhibit significantly enhanced performance: the capacity outputs increases from 160.5 mAh g−1 to 172.2 mAh g−1 and capacity retention after 200 cycles from 58.1% to 89.4%. Further development of the 1,3,2-dioxathiolane-2,2-dioxide as an electrolyte additive is a promising step towards high voltage stable electrolyte and high energy density lithium ion battery. •DTD can significantly increase the cyclic stability of LiCoO2/graphite battery at high voltage.•DTD has strong coordination with Co metal ions, which can inhibit the Co be reduced on graphite anode.•The DTD can alleviate the transition metal atom direct attack on SEI films.•The DTD can be reduced on graphite anode and facilitates to form a stable protect films.
doi_str_mv 10.1016/j.jelechem.2019.113411
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2347635096</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1572665719306794</els_id><sourcerecordid>2347635096</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-690891847810f6f910032f693c9b25a7db258d3052232f770452b86ae832ac8d3</originalsourceid><addsrcrecordid>eNqFkctOwzAQRSMEEqXwC8gS67R-JI6zA1W8pErd0LXlOpPEURIX261U_oP_xaV0zcYeee491sxNknuCZwQTPu9mHfSgWxhmFJNyRgjLCLlIJkQULKU5Ly9jnRc05TwvrpMb7zuMqRCETpLv9ViB80GNlRkbFFpAQ2Sp0fgB2Rrpg-6PjQoapyoVjB1R1KLR7qFHPjgVoDmgYGOtNqY3X_ALOfu24GrrBjVqOOIiZNuaAPOlWdgVRRsVArgDUgG1pmnR3vZBNXCbXNWq93D3d0-T9cvzx-ItXa5e3xdPy1SzDIeUl1iURGSFILjmdUkwZrTmJdPlhuaqqOIpKoZzSuN7UeAspxvBFQhGlY6dafJw4m6d_dyBD7KzOzfGLyVlWcFZjkseVfyk0s5676CWW2cG5Q6SYHmMQHbyHIE8RiBPEUTj48kIcYa9ASe9NhBXURkHOsjKmv8QPw6xlDU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2347635096</pqid></control><display><type>article</type><title>Understanding the mechanism of cycling degradation and novel strategy to stabilize the cycling performance of graphite/LiCoO2 battery at high voltage</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Wang, Zaisheng ; Rao, Mumin ; Li, Jianhui ; Ye, Changchun ; Liu, Zidan ; Xu, Qingshuai ; Jin, Xiaojing ; Du, Ruian ; Xie, Qiming ; Luo, Wen ; Li, Weishan ; Qiu, Yongcai</creator><creatorcontrib>Wang, Zaisheng ; Rao, Mumin ; Li, Jianhui ; Ye, Changchun ; Liu, Zidan ; Xu, Qingshuai ; Jin, Xiaojing ; Du, Ruian ; Xie, Qiming ; Luo, Wen ; Li, Weishan ; Qiu, Yongcai</creatorcontrib><description>Interest in wide-operating-voltage lithium-ion batteries is thriving because higher energy density can be enabled by employing higher-voltage cathodes and robust, stable electrolyte system. However, the severe solubilization of cobalt occurred at high cut-off voltage leads to rapid capacity degradation and limited lifespan. Here, we show that 1,3,2-dioxathiolane-2,2-dioxide as electrolyte additive has strong complexation ability to cobalt ions, which can inhibit the direct attack on solid electrolyte interphase films. Through calculation, the additive was proven to possess more negative lowest unoccupied molecular orbital energy than well-studied ethylene carbonate, diethyl carbonate and ethyl methyl carbonate, which facilitates the reduction to form a protective film easily. As results, the LiCoO2/graphite pouch cells with 2 wt% additive cycled at 1C between 3.0 and 4.45 V exhibit significantly enhanced performance: the capacity outputs increases from 160.5 mAh g−1 to 172.2 mAh g−1 and capacity retention after 200 cycles from 58.1% to 89.4%. Further development of the 1,3,2-dioxathiolane-2,2-dioxide as an electrolyte additive is a promising step towards high voltage stable electrolyte and high energy density lithium ion battery. •DTD can significantly increase the cyclic stability of LiCoO2/graphite battery at high voltage.•DTD has strong coordination with Co metal ions, which can inhibit the Co be reduced on graphite anode.•The DTD can alleviate the transition metal atom direct attack on SEI films.•The DTD can be reduced on graphite anode and facilitates to form a stable protect films.</description><identifier>ISSN: 1572-6657</identifier><identifier>EISSN: 1873-2569</identifier><identifier>DOI: 10.1016/j.jelechem.2019.113411</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>1,3,2,-Dioxathiolane 2,2-dioxide ; Cobalt ; Cycles ; Cyclic stability ; Degradation ; Dioxides ; Electrolyte additive ; Electrolytes ; Electrolytic cells ; Flux density ; Graphite ; Graphite anode ; High voltages ; Lithium ; Lithium cobalt oxide cathode ; Lithium compounds ; Lithium ion battery ; Lithium-ion batteries ; Molecular orbitals ; Performance enhancement ; Protective coatings ; Rechargeable batteries ; Solid electrolytes ; Solubilization</subject><ispartof>Journal of electroanalytical chemistry (Lausanne, Switzerland), 2019-10, Vol.851, p.113411, Article 113411</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Oct 10, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-690891847810f6f910032f693c9b25a7db258d3052232f770452b86ae832ac8d3</citedby><cites>FETCH-LOGICAL-c340t-690891847810f6f910032f693c9b25a7db258d3052232f770452b86ae832ac8d3</cites><orcidid>0000-0002-7843-6811</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jelechem.2019.113411$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids></links><search><creatorcontrib>Wang, Zaisheng</creatorcontrib><creatorcontrib>Rao, Mumin</creatorcontrib><creatorcontrib>Li, Jianhui</creatorcontrib><creatorcontrib>Ye, Changchun</creatorcontrib><creatorcontrib>Liu, Zidan</creatorcontrib><creatorcontrib>Xu, Qingshuai</creatorcontrib><creatorcontrib>Jin, Xiaojing</creatorcontrib><creatorcontrib>Du, Ruian</creatorcontrib><creatorcontrib>Xie, Qiming</creatorcontrib><creatorcontrib>Luo, Wen</creatorcontrib><creatorcontrib>Li, Weishan</creatorcontrib><creatorcontrib>Qiu, Yongcai</creatorcontrib><title>Understanding the mechanism of cycling degradation and novel strategy to stabilize the cycling performance of graphite/LiCoO2 battery at high voltage</title><title>Journal of electroanalytical chemistry (Lausanne, Switzerland)</title><description>Interest in wide-operating-voltage lithium-ion batteries is thriving because higher energy density can be enabled by employing higher-voltage cathodes and robust, stable electrolyte system. However, the severe solubilization of cobalt occurred at high cut-off voltage leads to rapid capacity degradation and limited lifespan. Here, we show that 1,3,2-dioxathiolane-2,2-dioxide as electrolyte additive has strong complexation ability to cobalt ions, which can inhibit the direct attack on solid electrolyte interphase films. Through calculation, the additive was proven to possess more negative lowest unoccupied molecular orbital energy than well-studied ethylene carbonate, diethyl carbonate and ethyl methyl carbonate, which facilitates the reduction to form a protective film easily. As results, the LiCoO2/graphite pouch cells with 2 wt% additive cycled at 1C between 3.0 and 4.45 V exhibit significantly enhanced performance: the capacity outputs increases from 160.5 mAh g−1 to 172.2 mAh g−1 and capacity retention after 200 cycles from 58.1% to 89.4%. Further development of the 1,3,2-dioxathiolane-2,2-dioxide as an electrolyte additive is a promising step towards high voltage stable electrolyte and high energy density lithium ion battery. •DTD can significantly increase the cyclic stability of LiCoO2/graphite battery at high voltage.•DTD has strong coordination with Co metal ions, which can inhibit the Co be reduced on graphite anode.•The DTD can alleviate the transition metal atom direct attack on SEI films.•The DTD can be reduced on graphite anode and facilitates to form a stable protect films.</description><subject>1,3,2,-Dioxathiolane 2,2-dioxide</subject><subject>Cobalt</subject><subject>Cycles</subject><subject>Cyclic stability</subject><subject>Degradation</subject><subject>Dioxides</subject><subject>Electrolyte additive</subject><subject>Electrolytes</subject><subject>Electrolytic cells</subject><subject>Flux density</subject><subject>Graphite</subject><subject>Graphite anode</subject><subject>High voltages</subject><subject>Lithium</subject><subject>Lithium cobalt oxide cathode</subject><subject>Lithium compounds</subject><subject>Lithium ion battery</subject><subject>Lithium-ion batteries</subject><subject>Molecular orbitals</subject><subject>Performance enhancement</subject><subject>Protective coatings</subject><subject>Rechargeable batteries</subject><subject>Solid electrolytes</subject><subject>Solubilization</subject><issn>1572-6657</issn><issn>1873-2569</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkctOwzAQRSMEEqXwC8gS67R-JI6zA1W8pErd0LXlOpPEURIX261U_oP_xaV0zcYeee491sxNknuCZwQTPu9mHfSgWxhmFJNyRgjLCLlIJkQULKU5Ly9jnRc05TwvrpMb7zuMqRCETpLv9ViB80GNlRkbFFpAQ2Sp0fgB2Rrpg-6PjQoapyoVjB1R1KLR7qFHPjgVoDmgYGOtNqY3X_ALOfu24GrrBjVqOOIiZNuaAPOlWdgVRRsVArgDUgG1pmnR3vZBNXCbXNWq93D3d0-T9cvzx-ItXa5e3xdPy1SzDIeUl1iURGSFILjmdUkwZrTmJdPlhuaqqOIpKoZzSuN7UeAspxvBFQhGlY6dafJw4m6d_dyBD7KzOzfGLyVlWcFZjkseVfyk0s5676CWW2cG5Q6SYHmMQHbyHIE8RiBPEUTj48kIcYa9ASe9NhBXURkHOsjKmv8QPw6xlDU</recordid><startdate>20191010</startdate><enddate>20191010</enddate><creator>Wang, Zaisheng</creator><creator>Rao, Mumin</creator><creator>Li, Jianhui</creator><creator>Ye, Changchun</creator><creator>Liu, Zidan</creator><creator>Xu, Qingshuai</creator><creator>Jin, Xiaojing</creator><creator>Du, Ruian</creator><creator>Xie, Qiming</creator><creator>Luo, Wen</creator><creator>Li, Weishan</creator><creator>Qiu, Yongcai</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-7843-6811</orcidid></search><sort><creationdate>20191010</creationdate><title>Understanding the mechanism of cycling degradation and novel strategy to stabilize the cycling performance of graphite/LiCoO2 battery at high voltage</title><author>Wang, Zaisheng ; Rao, Mumin ; Li, Jianhui ; Ye, Changchun ; Liu, Zidan ; Xu, Qingshuai ; Jin, Xiaojing ; Du, Ruian ; Xie, Qiming ; Luo, Wen ; Li, Weishan ; Qiu, Yongcai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-690891847810f6f910032f693c9b25a7db258d3052232f770452b86ae832ac8d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>1,3,2,-Dioxathiolane 2,2-dioxide</topic><topic>Cobalt</topic><topic>Cycles</topic><topic>Cyclic stability</topic><topic>Degradation</topic><topic>Dioxides</topic><topic>Electrolyte additive</topic><topic>Electrolytes</topic><topic>Electrolytic cells</topic><topic>Flux density</topic><topic>Graphite</topic><topic>Graphite anode</topic><topic>High voltages</topic><topic>Lithium</topic><topic>Lithium cobalt oxide cathode</topic><topic>Lithium compounds</topic><topic>Lithium ion battery</topic><topic>Lithium-ion batteries</topic><topic>Molecular orbitals</topic><topic>Performance enhancement</topic><topic>Protective coatings</topic><topic>Rechargeable batteries</topic><topic>Solid electrolytes</topic><topic>Solubilization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Zaisheng</creatorcontrib><creatorcontrib>Rao, Mumin</creatorcontrib><creatorcontrib>Li, Jianhui</creatorcontrib><creatorcontrib>Ye, Changchun</creatorcontrib><creatorcontrib>Liu, Zidan</creatorcontrib><creatorcontrib>Xu, Qingshuai</creatorcontrib><creatorcontrib>Jin, Xiaojing</creatorcontrib><creatorcontrib>Du, Ruian</creatorcontrib><creatorcontrib>Xie, Qiming</creatorcontrib><creatorcontrib>Luo, Wen</creatorcontrib><creatorcontrib>Li, Weishan</creatorcontrib><creatorcontrib>Qiu, Yongcai</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of electroanalytical chemistry (Lausanne, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Zaisheng</au><au>Rao, Mumin</au><au>Li, Jianhui</au><au>Ye, Changchun</au><au>Liu, Zidan</au><au>Xu, Qingshuai</au><au>Jin, Xiaojing</au><au>Du, Ruian</au><au>Xie, Qiming</au><au>Luo, Wen</au><au>Li, Weishan</au><au>Qiu, Yongcai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Understanding the mechanism of cycling degradation and novel strategy to stabilize the cycling performance of graphite/LiCoO2 battery at high voltage</atitle><jtitle>Journal of electroanalytical chemistry (Lausanne, Switzerland)</jtitle><date>2019-10-10</date><risdate>2019</risdate><volume>851</volume><spage>113411</spage><pages>113411-</pages><artnum>113411</artnum><issn>1572-6657</issn><eissn>1873-2569</eissn><abstract>Interest in wide-operating-voltage lithium-ion batteries is thriving because higher energy density can be enabled by employing higher-voltage cathodes and robust, stable electrolyte system. However, the severe solubilization of cobalt occurred at high cut-off voltage leads to rapid capacity degradation and limited lifespan. Here, we show that 1,3,2-dioxathiolane-2,2-dioxide as electrolyte additive has strong complexation ability to cobalt ions, which can inhibit the direct attack on solid electrolyte interphase films. Through calculation, the additive was proven to possess more negative lowest unoccupied molecular orbital energy than well-studied ethylene carbonate, diethyl carbonate and ethyl methyl carbonate, which facilitates the reduction to form a protective film easily. As results, the LiCoO2/graphite pouch cells with 2 wt% additive cycled at 1C between 3.0 and 4.45 V exhibit significantly enhanced performance: the capacity outputs increases from 160.5 mAh g−1 to 172.2 mAh g−1 and capacity retention after 200 cycles from 58.1% to 89.4%. Further development of the 1,3,2-dioxathiolane-2,2-dioxide as an electrolyte additive is a promising step towards high voltage stable electrolyte and high energy density lithium ion battery. •DTD can significantly increase the cyclic stability of LiCoO2/graphite battery at high voltage.•DTD has strong coordination with Co metal ions, which can inhibit the Co be reduced on graphite anode.•The DTD can alleviate the transition metal atom direct attack on SEI films.•The DTD can be reduced on graphite anode and facilitates to form a stable protect films.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jelechem.2019.113411</doi><orcidid>https://orcid.org/0000-0002-7843-6811</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1572-6657
ispartof Journal of electroanalytical chemistry (Lausanne, Switzerland), 2019-10, Vol.851, p.113411, Article 113411
issn 1572-6657
1873-2569
language eng
recordid cdi_proquest_journals_2347635096
source ScienceDirect Journals (5 years ago - present)
subjects 1,3,2,-Dioxathiolane 2,2-dioxide
Cobalt
Cycles
Cyclic stability
Degradation
Dioxides
Electrolyte additive
Electrolytes
Electrolytic cells
Flux density
Graphite
Graphite anode
High voltages
Lithium
Lithium cobalt oxide cathode
Lithium compounds
Lithium ion battery
Lithium-ion batteries
Molecular orbitals
Performance enhancement
Protective coatings
Rechargeable batteries
Solid electrolytes
Solubilization
title Understanding the mechanism of cycling degradation and novel strategy to stabilize the cycling performance of graphite/LiCoO2 battery at high voltage
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T22%3A32%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Understanding%20the%20mechanism%20of%20cycling%20degradation%20and%20novel%20strategy%20to%20stabilize%20the%20cycling%20performance%20of%20graphite/LiCoO2%20battery%20at%20high%20voltage&rft.jtitle=Journal%20of%20electroanalytical%20chemistry%20(Lausanne,%20Switzerland)&rft.au=Wang,%20Zaisheng&rft.date=2019-10-10&rft.volume=851&rft.spage=113411&rft.pages=113411-&rft.artnum=113411&rft.issn=1572-6657&rft.eissn=1873-2569&rft_id=info:doi/10.1016/j.jelechem.2019.113411&rft_dat=%3Cproquest_cross%3E2347635096%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2347635096&rft_id=info:pmid/&rft_els_id=S1572665719306794&rfr_iscdi=true