Deformation twinning in Au30Ag70 alloy nanowires under tensile strain
Defect-free AuAg alloy nanowires have the potential to be used in various plasmonic devices due to their superior chemical stability and broad applicable range of wavelengths. Alloyed nanowires have different stacking fault energies that can result in different deformation behavior compared to singl...
Gespeichert in:
Veröffentlicht in: | Journal of alloys and compounds 2020-03, Vol.816, p.152586, Article 152586 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 152586 |
container_title | Journal of alloys and compounds |
container_volume | 816 |
creator | Kim, Wonsik Park, Kkotchorong Yoo, Seung Jo Matteini, Paolo Hwang, Byungil Kim, Bongsoo Han, Seung Min |
description | Defect-free AuAg alloy nanowires have the potential to be used in various plasmonic devices due to their superior chemical stability and broad applicable range of wavelengths. Alloyed nanowires have different stacking fault energies that can result in different deformation behavior compared to single element nanowires; however, an in-depth analysis of such material system is yet to be explored. In this study, defect-free single crystalline Au30Ag70 alloy nanowires are synthesized by topotaxial growth method and tested in tension using an in-situ pico-indenter. Deformation twinning that results in superplastic deformation of alloy nanowires is experimentally observed. The critical dimension of Au30Ag70 alloy nanowires at which transition from ordinary plasticity to deformation twinning occurs, is experimentally determined to be ∼333 nm, which is about 2 time larger than that of Au nanowires. Stacking fault energy, which is the key element determining the deformation mode, of Au30Ag70 alloy nanowires is 21 mJ/m2, which is smaller than that of Au nanowire with stacking fault energy of 31 mJ/m2. The decrease in the stacking fault energy in the case of the alloy nanowires resulted in stabilization of deformation twinning to a larger critical dimension before transitioning to ordinary plasticity.
•Fabrication of defect-free, single crystalline Au30Ag70 alloy nanowires.•In-situ tensile tests of the Au30Ag70 alloy nanowires using Push-to-Pull devices.•Superplastic elongation and deformation twinning observed for diameter |
doi_str_mv | 10.1016/j.jallcom.2019.152586 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2347635007</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925838819338320</els_id><sourcerecordid>2347635007</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-f2ef34c5dd69c908013a861d9e21d6a20a7127dd09f4434f3fc3876fd2e45f643</originalsourceid><addsrcrecordid>eNqFkEtLAzEUhYMoWKs_QQi4njGvSTIrKfUJBTe6DiGPkmGa1GTG0n_vlOne1d2c813OB8A9RjVGmD92daf73qRdTRBua9yQRvILsMBS0Ipx3l6CBWpJU0kq5TW4KaVDaEpSvAAvz86nvNNDSBEOhxBjiFsYIlyNFK22AsEJnY4w6pgOIbsCx2hdhoOLJfQOliHrEG_Bldd9cXfnuwTfry9f6_dq8_n2sV5tKkOpGCpPnKfMNNby1rRIIky15Ni2jmDLNUFaYCKsRa1njDJPvaFScG-JY43njC7Bw8zd5_QzujKoLo05Ti8VoUxw2iAkplQzp0xOpWTn1T6Hnc5HhZE6GVOdOhtTJ2NqNjb1nuaemyb8BpdVMcFF4-w03AzKpvAP4Q82t3YQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2347635007</pqid></control><display><type>article</type><title>Deformation twinning in Au30Ag70 alloy nanowires under tensile strain</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Kim, Wonsik ; Park, Kkotchorong ; Yoo, Seung Jo ; Matteini, Paolo ; Hwang, Byungil ; Kim, Bongsoo ; Han, Seung Min</creator><creatorcontrib>Kim, Wonsik ; Park, Kkotchorong ; Yoo, Seung Jo ; Matteini, Paolo ; Hwang, Byungil ; Kim, Bongsoo ; Han, Seung Min</creatorcontrib><description>Defect-free AuAg alloy nanowires have the potential to be used in various plasmonic devices due to their superior chemical stability and broad applicable range of wavelengths. Alloyed nanowires have different stacking fault energies that can result in different deformation behavior compared to single element nanowires; however, an in-depth analysis of such material system is yet to be explored. In this study, defect-free single crystalline Au30Ag70 alloy nanowires are synthesized by topotaxial growth method and tested in tension using an in-situ pico-indenter. Deformation twinning that results in superplastic deformation of alloy nanowires is experimentally observed. The critical dimension of Au30Ag70 alloy nanowires at which transition from ordinary plasticity to deformation twinning occurs, is experimentally determined to be ∼333 nm, which is about 2 time larger than that of Au nanowires. Stacking fault energy, which is the key element determining the deformation mode, of Au30Ag70 alloy nanowires is 21 mJ/m2, which is smaller than that of Au nanowire with stacking fault energy of 31 mJ/m2. The decrease in the stacking fault energy in the case of the alloy nanowires resulted in stabilization of deformation twinning to a larger critical dimension before transitioning to ordinary plasticity.
•Fabrication of defect-free, single crystalline Au30Ag70 alloy nanowires.•In-situ tensile tests of the Au30Ag70 alloy nanowires using Push-to-Pull devices.•Superplastic elongation and deformation twinning observed for diameter <333 nm.•Orientation of the wire changed from [110] to [100].•Critical dimension for twinning increased by the decrease in stacking fault energy.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2019.152586</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Alloy ; Alloying ; AuAg ; Gold ; Gold base alloys ; Nanowire ; Nanowires ; Organic chemistry ; Plastic deformation ; Plastic properties ; Stacking fault energy ; Superplastic deformation ; Superplastic forming ; Superplasticity ; Tensile ; Tensile strain ; Twinning</subject><ispartof>Journal of alloys and compounds, 2020-03, Vol.816, p.152586, Article 152586</ispartof><rights>2019</rights><rights>Copyright Elsevier BV Mar 5, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-f2ef34c5dd69c908013a861d9e21d6a20a7127dd09f4434f3fc3876fd2e45f643</citedby><cites>FETCH-LOGICAL-c337t-f2ef34c5dd69c908013a861d9e21d6a20a7127dd09f4434f3fc3876fd2e45f643</cites><orcidid>0000-0001-9434-6405</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jallcom.2019.152586$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Kim, Wonsik</creatorcontrib><creatorcontrib>Park, Kkotchorong</creatorcontrib><creatorcontrib>Yoo, Seung Jo</creatorcontrib><creatorcontrib>Matteini, Paolo</creatorcontrib><creatorcontrib>Hwang, Byungil</creatorcontrib><creatorcontrib>Kim, Bongsoo</creatorcontrib><creatorcontrib>Han, Seung Min</creatorcontrib><title>Deformation twinning in Au30Ag70 alloy nanowires under tensile strain</title><title>Journal of alloys and compounds</title><description>Defect-free AuAg alloy nanowires have the potential to be used in various plasmonic devices due to their superior chemical stability and broad applicable range of wavelengths. Alloyed nanowires have different stacking fault energies that can result in different deformation behavior compared to single element nanowires; however, an in-depth analysis of such material system is yet to be explored. In this study, defect-free single crystalline Au30Ag70 alloy nanowires are synthesized by topotaxial growth method and tested in tension using an in-situ pico-indenter. Deformation twinning that results in superplastic deformation of alloy nanowires is experimentally observed. The critical dimension of Au30Ag70 alloy nanowires at which transition from ordinary plasticity to deformation twinning occurs, is experimentally determined to be ∼333 nm, which is about 2 time larger than that of Au nanowires. Stacking fault energy, which is the key element determining the deformation mode, of Au30Ag70 alloy nanowires is 21 mJ/m2, which is smaller than that of Au nanowire with stacking fault energy of 31 mJ/m2. The decrease in the stacking fault energy in the case of the alloy nanowires resulted in stabilization of deformation twinning to a larger critical dimension before transitioning to ordinary plasticity.
•Fabrication of defect-free, single crystalline Au30Ag70 alloy nanowires.•In-situ tensile tests of the Au30Ag70 alloy nanowires using Push-to-Pull devices.•Superplastic elongation and deformation twinning observed for diameter <333 nm.•Orientation of the wire changed from [110] to [100].•Critical dimension for twinning increased by the decrease in stacking fault energy.</description><subject>Alloy</subject><subject>Alloying</subject><subject>AuAg</subject><subject>Gold</subject><subject>Gold base alloys</subject><subject>Nanowire</subject><subject>Nanowires</subject><subject>Organic chemistry</subject><subject>Plastic deformation</subject><subject>Plastic properties</subject><subject>Stacking fault energy</subject><subject>Superplastic deformation</subject><subject>Superplastic forming</subject><subject>Superplasticity</subject><subject>Tensile</subject><subject>Tensile strain</subject><subject>Twinning</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEUhYMoWKs_QQi4njGvSTIrKfUJBTe6DiGPkmGa1GTG0n_vlOne1d2c813OB8A9RjVGmD92daf73qRdTRBua9yQRvILsMBS0Ipx3l6CBWpJU0kq5TW4KaVDaEpSvAAvz86nvNNDSBEOhxBjiFsYIlyNFK22AsEJnY4w6pgOIbsCx2hdhoOLJfQOliHrEG_Bldd9cXfnuwTfry9f6_dq8_n2sV5tKkOpGCpPnKfMNNby1rRIIky15Ni2jmDLNUFaYCKsRa1njDJPvaFScG-JY43njC7Bw8zd5_QzujKoLo05Ti8VoUxw2iAkplQzp0xOpWTn1T6Hnc5HhZE6GVOdOhtTJ2NqNjb1nuaemyb8BpdVMcFF4-w03AzKpvAP4Q82t3YQ</recordid><startdate>20200305</startdate><enddate>20200305</enddate><creator>Kim, Wonsik</creator><creator>Park, Kkotchorong</creator><creator>Yoo, Seung Jo</creator><creator>Matteini, Paolo</creator><creator>Hwang, Byungil</creator><creator>Kim, Bongsoo</creator><creator>Han, Seung Min</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-9434-6405</orcidid></search><sort><creationdate>20200305</creationdate><title>Deformation twinning in Au30Ag70 alloy nanowires under tensile strain</title><author>Kim, Wonsik ; Park, Kkotchorong ; Yoo, Seung Jo ; Matteini, Paolo ; Hwang, Byungil ; Kim, Bongsoo ; Han, Seung Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-f2ef34c5dd69c908013a861d9e21d6a20a7127dd09f4434f3fc3876fd2e45f643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alloy</topic><topic>Alloying</topic><topic>AuAg</topic><topic>Gold</topic><topic>Gold base alloys</topic><topic>Nanowire</topic><topic>Nanowires</topic><topic>Organic chemistry</topic><topic>Plastic deformation</topic><topic>Plastic properties</topic><topic>Stacking fault energy</topic><topic>Superplastic deformation</topic><topic>Superplastic forming</topic><topic>Superplasticity</topic><topic>Tensile</topic><topic>Tensile strain</topic><topic>Twinning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Wonsik</creatorcontrib><creatorcontrib>Park, Kkotchorong</creatorcontrib><creatorcontrib>Yoo, Seung Jo</creatorcontrib><creatorcontrib>Matteini, Paolo</creatorcontrib><creatorcontrib>Hwang, Byungil</creatorcontrib><creatorcontrib>Kim, Bongsoo</creatorcontrib><creatorcontrib>Han, Seung Min</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Wonsik</au><au>Park, Kkotchorong</au><au>Yoo, Seung Jo</au><au>Matteini, Paolo</au><au>Hwang, Byungil</au><au>Kim, Bongsoo</au><au>Han, Seung Min</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deformation twinning in Au30Ag70 alloy nanowires under tensile strain</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2020-03-05</date><risdate>2020</risdate><volume>816</volume><spage>152586</spage><pages>152586-</pages><artnum>152586</artnum><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>Defect-free AuAg alloy nanowires have the potential to be used in various plasmonic devices due to their superior chemical stability and broad applicable range of wavelengths. Alloyed nanowires have different stacking fault energies that can result in different deformation behavior compared to single element nanowires; however, an in-depth analysis of such material system is yet to be explored. In this study, defect-free single crystalline Au30Ag70 alloy nanowires are synthesized by topotaxial growth method and tested in tension using an in-situ pico-indenter. Deformation twinning that results in superplastic deformation of alloy nanowires is experimentally observed. The critical dimension of Au30Ag70 alloy nanowires at which transition from ordinary plasticity to deformation twinning occurs, is experimentally determined to be ∼333 nm, which is about 2 time larger than that of Au nanowires. Stacking fault energy, which is the key element determining the deformation mode, of Au30Ag70 alloy nanowires is 21 mJ/m2, which is smaller than that of Au nanowire with stacking fault energy of 31 mJ/m2. The decrease in the stacking fault energy in the case of the alloy nanowires resulted in stabilization of deformation twinning to a larger critical dimension before transitioning to ordinary plasticity.
•Fabrication of defect-free, single crystalline Au30Ag70 alloy nanowires.•In-situ tensile tests of the Au30Ag70 alloy nanowires using Push-to-Pull devices.•Superplastic elongation and deformation twinning observed for diameter <333 nm.•Orientation of the wire changed from [110] to [100].•Critical dimension for twinning increased by the decrease in stacking fault energy.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jallcom.2019.152586</doi><orcidid>https://orcid.org/0000-0001-9434-6405</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-8388 |
ispartof | Journal of alloys and compounds, 2020-03, Vol.816, p.152586, Article 152586 |
issn | 0925-8388 1873-4669 |
language | eng |
recordid | cdi_proquest_journals_2347635007 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Alloy Alloying AuAg Gold Gold base alloys Nanowire Nanowires Organic chemistry Plastic deformation Plastic properties Stacking fault energy Superplastic deformation Superplastic forming Superplasticity Tensile Tensile strain Twinning |
title | Deformation twinning in Au30Ag70 alloy nanowires under tensile strain |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T10%3A00%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deformation%20twinning%20in%20Au30Ag70%20alloy%20nanowires%20under%20tensile%20strain&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Kim,%20Wonsik&rft.date=2020-03-05&rft.volume=816&rft.spage=152586&rft.pages=152586-&rft.artnum=152586&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2019.152586&rft_dat=%3Cproquest_cross%3E2347635007%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2347635007&rft_id=info:pmid/&rft_els_id=S0925838819338320&rfr_iscdi=true |