Deformation twinning in Au30Ag70 alloy nanowires under tensile strain

Defect-free AuAg alloy nanowires have the potential to be used in various plasmonic devices due to their superior chemical stability and broad applicable range of wavelengths. Alloyed nanowires have different stacking fault energies that can result in different deformation behavior compared to singl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of alloys and compounds 2020-03, Vol.816, p.152586, Article 152586
Hauptverfasser: Kim, Wonsik, Park, Kkotchorong, Yoo, Seung Jo, Matteini, Paolo, Hwang, Byungil, Kim, Bongsoo, Han, Seung Min
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 152586
container_title Journal of alloys and compounds
container_volume 816
creator Kim, Wonsik
Park, Kkotchorong
Yoo, Seung Jo
Matteini, Paolo
Hwang, Byungil
Kim, Bongsoo
Han, Seung Min
description Defect-free AuAg alloy nanowires have the potential to be used in various plasmonic devices due to their superior chemical stability and broad applicable range of wavelengths. Alloyed nanowires have different stacking fault energies that can result in different deformation behavior compared to single element nanowires; however, an in-depth analysis of such material system is yet to be explored. In this study, defect-free single crystalline Au30Ag70 alloy nanowires are synthesized by topotaxial growth method and tested in tension using an in-situ pico-indenter. Deformation twinning that results in superplastic deformation of alloy nanowires is experimentally observed. The critical dimension of Au30Ag70 alloy nanowires at which transition from ordinary plasticity to deformation twinning occurs, is experimentally determined to be ∼333 nm, which is about 2 time larger than that of Au nanowires. Stacking fault energy, which is the key element determining the deformation mode, of Au30Ag70 alloy nanowires is 21 mJ/m2, which is smaller than that of Au nanowire with stacking fault energy of 31 mJ/m2. The decrease in the stacking fault energy in the case of the alloy nanowires resulted in stabilization of deformation twinning to a larger critical dimension before transitioning to ordinary plasticity. •Fabrication of defect-free, single crystalline Au30Ag70 alloy nanowires.•In-situ tensile tests of the Au30Ag70 alloy nanowires using Push-to-Pull devices.•Superplastic elongation and deformation twinning observed for diameter
doi_str_mv 10.1016/j.jallcom.2019.152586
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2347635007</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925838819338320</els_id><sourcerecordid>2347635007</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-f2ef34c5dd69c908013a861d9e21d6a20a7127dd09f4434f3fc3876fd2e45f643</originalsourceid><addsrcrecordid>eNqFkEtLAzEUhYMoWKs_QQi4njGvSTIrKfUJBTe6DiGPkmGa1GTG0n_vlOne1d2c813OB8A9RjVGmD92daf73qRdTRBua9yQRvILsMBS0Ipx3l6CBWpJU0kq5TW4KaVDaEpSvAAvz86nvNNDSBEOhxBjiFsYIlyNFK22AsEJnY4w6pgOIbsCx2hdhoOLJfQOliHrEG_Bldd9cXfnuwTfry9f6_dq8_n2sV5tKkOpGCpPnKfMNNby1rRIIky15Ni2jmDLNUFaYCKsRa1njDJPvaFScG-JY43njC7Bw8zd5_QzujKoLo05Ti8VoUxw2iAkplQzp0xOpWTn1T6Hnc5HhZE6GVOdOhtTJ2NqNjb1nuaemyb8BpdVMcFF4-w03AzKpvAP4Q82t3YQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2347635007</pqid></control><display><type>article</type><title>Deformation twinning in Au30Ag70 alloy nanowires under tensile strain</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Kim, Wonsik ; Park, Kkotchorong ; Yoo, Seung Jo ; Matteini, Paolo ; Hwang, Byungil ; Kim, Bongsoo ; Han, Seung Min</creator><creatorcontrib>Kim, Wonsik ; Park, Kkotchorong ; Yoo, Seung Jo ; Matteini, Paolo ; Hwang, Byungil ; Kim, Bongsoo ; Han, Seung Min</creatorcontrib><description>Defect-free AuAg alloy nanowires have the potential to be used in various plasmonic devices due to their superior chemical stability and broad applicable range of wavelengths. Alloyed nanowires have different stacking fault energies that can result in different deformation behavior compared to single element nanowires; however, an in-depth analysis of such material system is yet to be explored. In this study, defect-free single crystalline Au30Ag70 alloy nanowires are synthesized by topotaxial growth method and tested in tension using an in-situ pico-indenter. Deformation twinning that results in superplastic deformation of alloy nanowires is experimentally observed. The critical dimension of Au30Ag70 alloy nanowires at which transition from ordinary plasticity to deformation twinning occurs, is experimentally determined to be ∼333 nm, which is about 2 time larger than that of Au nanowires. Stacking fault energy, which is the key element determining the deformation mode, of Au30Ag70 alloy nanowires is 21 mJ/m2, which is smaller than that of Au nanowire with stacking fault energy of 31 mJ/m2. The decrease in the stacking fault energy in the case of the alloy nanowires resulted in stabilization of deformation twinning to a larger critical dimension before transitioning to ordinary plasticity. •Fabrication of defect-free, single crystalline Au30Ag70 alloy nanowires.•In-situ tensile tests of the Au30Ag70 alloy nanowires using Push-to-Pull devices.•Superplastic elongation and deformation twinning observed for diameter &lt;333 nm.•Orientation of the wire changed from [110] to [100].•Critical dimension for twinning increased by the decrease in stacking fault energy.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2019.152586</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Alloy ; Alloying ; AuAg ; Gold ; Gold base alloys ; Nanowire ; Nanowires ; Organic chemistry ; Plastic deformation ; Plastic properties ; Stacking fault energy ; Superplastic deformation ; Superplastic forming ; Superplasticity ; Tensile ; Tensile strain ; Twinning</subject><ispartof>Journal of alloys and compounds, 2020-03, Vol.816, p.152586, Article 152586</ispartof><rights>2019</rights><rights>Copyright Elsevier BV Mar 5, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-f2ef34c5dd69c908013a861d9e21d6a20a7127dd09f4434f3fc3876fd2e45f643</citedby><cites>FETCH-LOGICAL-c337t-f2ef34c5dd69c908013a861d9e21d6a20a7127dd09f4434f3fc3876fd2e45f643</cites><orcidid>0000-0001-9434-6405</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jallcom.2019.152586$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Kim, Wonsik</creatorcontrib><creatorcontrib>Park, Kkotchorong</creatorcontrib><creatorcontrib>Yoo, Seung Jo</creatorcontrib><creatorcontrib>Matteini, Paolo</creatorcontrib><creatorcontrib>Hwang, Byungil</creatorcontrib><creatorcontrib>Kim, Bongsoo</creatorcontrib><creatorcontrib>Han, Seung Min</creatorcontrib><title>Deformation twinning in Au30Ag70 alloy nanowires under tensile strain</title><title>Journal of alloys and compounds</title><description>Defect-free AuAg alloy nanowires have the potential to be used in various plasmonic devices due to their superior chemical stability and broad applicable range of wavelengths. Alloyed nanowires have different stacking fault energies that can result in different deformation behavior compared to single element nanowires; however, an in-depth analysis of such material system is yet to be explored. In this study, defect-free single crystalline Au30Ag70 alloy nanowires are synthesized by topotaxial growth method and tested in tension using an in-situ pico-indenter. Deformation twinning that results in superplastic deformation of alloy nanowires is experimentally observed. The critical dimension of Au30Ag70 alloy nanowires at which transition from ordinary plasticity to deformation twinning occurs, is experimentally determined to be ∼333 nm, which is about 2 time larger than that of Au nanowires. Stacking fault energy, which is the key element determining the deformation mode, of Au30Ag70 alloy nanowires is 21 mJ/m2, which is smaller than that of Au nanowire with stacking fault energy of 31 mJ/m2. The decrease in the stacking fault energy in the case of the alloy nanowires resulted in stabilization of deformation twinning to a larger critical dimension before transitioning to ordinary plasticity. •Fabrication of defect-free, single crystalline Au30Ag70 alloy nanowires.•In-situ tensile tests of the Au30Ag70 alloy nanowires using Push-to-Pull devices.•Superplastic elongation and deformation twinning observed for diameter &lt;333 nm.•Orientation of the wire changed from [110] to [100].•Critical dimension for twinning increased by the decrease in stacking fault energy.</description><subject>Alloy</subject><subject>Alloying</subject><subject>AuAg</subject><subject>Gold</subject><subject>Gold base alloys</subject><subject>Nanowire</subject><subject>Nanowires</subject><subject>Organic chemistry</subject><subject>Plastic deformation</subject><subject>Plastic properties</subject><subject>Stacking fault energy</subject><subject>Superplastic deformation</subject><subject>Superplastic forming</subject><subject>Superplasticity</subject><subject>Tensile</subject><subject>Tensile strain</subject><subject>Twinning</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEUhYMoWKs_QQi4njGvSTIrKfUJBTe6DiGPkmGa1GTG0n_vlOne1d2c813OB8A9RjVGmD92daf73qRdTRBua9yQRvILsMBS0Ipx3l6CBWpJU0kq5TW4KaVDaEpSvAAvz86nvNNDSBEOhxBjiFsYIlyNFK22AsEJnY4w6pgOIbsCx2hdhoOLJfQOliHrEG_Bldd9cXfnuwTfry9f6_dq8_n2sV5tKkOpGCpPnKfMNNby1rRIIky15Ni2jmDLNUFaYCKsRa1njDJPvaFScG-JY43njC7Bw8zd5_QzujKoLo05Ti8VoUxw2iAkplQzp0xOpWTn1T6Hnc5HhZE6GVOdOhtTJ2NqNjb1nuaemyb8BpdVMcFF4-w03AzKpvAP4Q82t3YQ</recordid><startdate>20200305</startdate><enddate>20200305</enddate><creator>Kim, Wonsik</creator><creator>Park, Kkotchorong</creator><creator>Yoo, Seung Jo</creator><creator>Matteini, Paolo</creator><creator>Hwang, Byungil</creator><creator>Kim, Bongsoo</creator><creator>Han, Seung Min</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-9434-6405</orcidid></search><sort><creationdate>20200305</creationdate><title>Deformation twinning in Au30Ag70 alloy nanowires under tensile strain</title><author>Kim, Wonsik ; Park, Kkotchorong ; Yoo, Seung Jo ; Matteini, Paolo ; Hwang, Byungil ; Kim, Bongsoo ; Han, Seung Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-f2ef34c5dd69c908013a861d9e21d6a20a7127dd09f4434f3fc3876fd2e45f643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alloy</topic><topic>Alloying</topic><topic>AuAg</topic><topic>Gold</topic><topic>Gold base alloys</topic><topic>Nanowire</topic><topic>Nanowires</topic><topic>Organic chemistry</topic><topic>Plastic deformation</topic><topic>Plastic properties</topic><topic>Stacking fault energy</topic><topic>Superplastic deformation</topic><topic>Superplastic forming</topic><topic>Superplasticity</topic><topic>Tensile</topic><topic>Tensile strain</topic><topic>Twinning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Wonsik</creatorcontrib><creatorcontrib>Park, Kkotchorong</creatorcontrib><creatorcontrib>Yoo, Seung Jo</creatorcontrib><creatorcontrib>Matteini, Paolo</creatorcontrib><creatorcontrib>Hwang, Byungil</creatorcontrib><creatorcontrib>Kim, Bongsoo</creatorcontrib><creatorcontrib>Han, Seung Min</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Wonsik</au><au>Park, Kkotchorong</au><au>Yoo, Seung Jo</au><au>Matteini, Paolo</au><au>Hwang, Byungil</au><au>Kim, Bongsoo</au><au>Han, Seung Min</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deformation twinning in Au30Ag70 alloy nanowires under tensile strain</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2020-03-05</date><risdate>2020</risdate><volume>816</volume><spage>152586</spage><pages>152586-</pages><artnum>152586</artnum><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>Defect-free AuAg alloy nanowires have the potential to be used in various plasmonic devices due to their superior chemical stability and broad applicable range of wavelengths. Alloyed nanowires have different stacking fault energies that can result in different deformation behavior compared to single element nanowires; however, an in-depth analysis of such material system is yet to be explored. In this study, defect-free single crystalline Au30Ag70 alloy nanowires are synthesized by topotaxial growth method and tested in tension using an in-situ pico-indenter. Deformation twinning that results in superplastic deformation of alloy nanowires is experimentally observed. The critical dimension of Au30Ag70 alloy nanowires at which transition from ordinary plasticity to deformation twinning occurs, is experimentally determined to be ∼333 nm, which is about 2 time larger than that of Au nanowires. Stacking fault energy, which is the key element determining the deformation mode, of Au30Ag70 alloy nanowires is 21 mJ/m2, which is smaller than that of Au nanowire with stacking fault energy of 31 mJ/m2. The decrease in the stacking fault energy in the case of the alloy nanowires resulted in stabilization of deformation twinning to a larger critical dimension before transitioning to ordinary plasticity. •Fabrication of defect-free, single crystalline Au30Ag70 alloy nanowires.•In-situ tensile tests of the Au30Ag70 alloy nanowires using Push-to-Pull devices.•Superplastic elongation and deformation twinning observed for diameter &lt;333 nm.•Orientation of the wire changed from [110] to [100].•Critical dimension for twinning increased by the decrease in stacking fault energy.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jallcom.2019.152586</doi><orcidid>https://orcid.org/0000-0001-9434-6405</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0925-8388
ispartof Journal of alloys and compounds, 2020-03, Vol.816, p.152586, Article 152586
issn 0925-8388
1873-4669
language eng
recordid cdi_proquest_journals_2347635007
source Elsevier ScienceDirect Journals Complete
subjects Alloy
Alloying
AuAg
Gold
Gold base alloys
Nanowire
Nanowires
Organic chemistry
Plastic deformation
Plastic properties
Stacking fault energy
Superplastic deformation
Superplastic forming
Superplasticity
Tensile
Tensile strain
Twinning
title Deformation twinning in Au30Ag70 alloy nanowires under tensile strain
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T10%3A00%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deformation%20twinning%20in%20Au30Ag70%20alloy%20nanowires%20under%20tensile%20strain&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Kim,%20Wonsik&rft.date=2020-03-05&rft.volume=816&rft.spage=152586&rft.pages=152586-&rft.artnum=152586&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2019.152586&rft_dat=%3Cproquest_cross%3E2347635007%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2347635007&rft_id=info:pmid/&rft_els_id=S0925838819338320&rfr_iscdi=true