Fault Creep and Strain Partitioning in Trinidad‐Tobago: Geodetic Measurements, Models, and Origin of Creep

The expansion of geodetic networks and Earth observing systems has allowed for new understandings of continental transform faults, including the partitioning of relative plate motions between multiple active strands and fault behavior during the earthquake cycle. One important global observation is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Tectonics (Washington, D.C.) D.C.), 2020-01, Vol.39 (1), p.n/a
Hauptverfasser: Weber, John, Geirsson, Halldor, La Femina, Peter, Robertson, Richard, Churches, Chris, Shaw, Kenton, Latchman, Joan, Higgins, Machel, Miller, Keith
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 1
container_start_page
container_title Tectonics (Washington, D.C.)
container_volume 39
creator Weber, John
Geirsson, Halldor
La Femina, Peter
Robertson, Richard
Churches, Chris
Shaw, Kenton
Latchman, Joan
Higgins, Machel
Miller, Keith
description The expansion of geodetic networks and Earth observing systems has allowed for new understandings of continental transform faults, including the partitioning of relative plate motions between multiple active strands and fault behavior during the earthquake cycle. One important global observation is that some continental transform faults creep (i.e., slip aseismically) at a percentage of or even at the full relative plate motion rate. The Caribbean‐South American plate boundary is a right‐stepping, segmented, dextral continental transform system. We studied active faults in the Trinidad‐Tobago segment of the Caribbean‐South American plate boundary zone using a new GPS‐derived horizontal velocity field, then modeled these data using a series of simple screw dislocation models. Our best‐fit model for interseismic strain accumulation requires 13.4 ± 0.3 mm/yr of right‐lateral movement and very shallow locking (0.2 ± 0.2 km), essentially creep, across the Central Range Fault (CRF), 3.4 ± 0.3 mm/yr across the South Coast Fault south of Trinidad, and 3.5 ± 0.3 mm/yr of dextral shear on fault(s) between Trinidad and Tobago. The CRF creeps along a physical boundary between rocks associated with thermogenically generated petroleum in south and central Trinidad and rocks containing only biogenic gas to the north. Fluid (oil and gas) overpressure, in addition to weak material in the fault core, likely causes CRF creep. Plain Language Summary We used GPS‐derived horizontal velocities to study active faulting in Trinidad and Tobago, which span the Caribbean‐South American transform plate boundary. The principal transform fault, the Central Range Fault, accommodates 12–15 mm/yr (~70%) of the total plate motion via creep. Secondary fault zones north and south of Trinidad each accommodate ~3.5 mm/yr of the remaining dextral shear. Creep on the Central Range Fault may be due to petroleum overpressures. Key Points Caribbean‐South American relative plate motion is currently accommodated on three active dextral transform faults at the longitude of Trinidad: the South Tobago Terrane Fault (~3.5 mm/yr), the Central Range Fault (12–15 mm/yr), and the South Coast Fault (~3.5 mm/yr) We suggest that petroleum‐related overpressure may be the main cause of creep on the Central Range Fault
doi_str_mv 10.1029/2019TC005530
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2347599278</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2347599278</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3304-c3e38107df7ab8ebd189b08aed164228262ca385fd58d51834a0fa6a28c51bb73</originalsourceid><addsrcrecordid>eNp9kM1Kw0AUhQdRsFZ3PsCA20bnL8nEnQRbhZYKxnW4yUzKlDRTZxKkOx_BZ_RJnBIXrtzcw7189xw4CF1TcksJy-4YoVmRExLHnJygCc2EiLIwT9GEsFRGqSDpObrwfksIFXGSTFA7h6Htce603mPoFH7tHZgOv4DrTW9sZ7oNDnvhTGcUqO_Pr8JWsLH3eKGt0r2p8UqDH5ze6a73M7wK1zbo0WztzCY822YMuERnDbReX_3qFL3NH4v8KVquF8_5wzICzomIaq65pCRVTQqV1JWiMquIBK1oIhiTLGE1cBk3KpYqppILIA0kwGQd06pK-RTdjL57Z98H7ftyawfXhciScZHGWRbaCNRspGpnvXe6KffO7MAdSkrKY5_l3z4Dzkf8w7T68C9bFo95wSijgv8AFnB3Aw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2347599278</pqid></control><display><type>article</type><title>Fault Creep and Strain Partitioning in Trinidad‐Tobago: Geodetic Measurements, Models, and Origin of Creep</title><source>Wiley Online Library Journals</source><source>Wiley Free Archive</source><source>Wiley-Blackwell AGU Digital Archive</source><source>EZB Electronic Journals Library</source><creator>Weber, John ; Geirsson, Halldor ; La Femina, Peter ; Robertson, Richard ; Churches, Chris ; Shaw, Kenton ; Latchman, Joan ; Higgins, Machel ; Miller, Keith</creator><creatorcontrib>Weber, John ; Geirsson, Halldor ; La Femina, Peter ; Robertson, Richard ; Churches, Chris ; Shaw, Kenton ; Latchman, Joan ; Higgins, Machel ; Miller, Keith</creatorcontrib><description>The expansion of geodetic networks and Earth observing systems has allowed for new understandings of continental transform faults, including the partitioning of relative plate motions between multiple active strands and fault behavior during the earthquake cycle. One important global observation is that some continental transform faults creep (i.e., slip aseismically) at a percentage of or even at the full relative plate motion rate. The Caribbean‐South American plate boundary is a right‐stepping, segmented, dextral continental transform system. We studied active faults in the Trinidad‐Tobago segment of the Caribbean‐South American plate boundary zone using a new GPS‐derived horizontal velocity field, then modeled these data using a series of simple screw dislocation models. Our best‐fit model for interseismic strain accumulation requires 13.4 ± 0.3 mm/yr of right‐lateral movement and very shallow locking (0.2 ± 0.2 km), essentially creep, across the Central Range Fault (CRF), 3.4 ± 0.3 mm/yr across the South Coast Fault south of Trinidad, and 3.5 ± 0.3 mm/yr of dextral shear on fault(s) between Trinidad and Tobago. The CRF creeps along a physical boundary between rocks associated with thermogenically generated petroleum in south and central Trinidad and rocks containing only biogenic gas to the north. Fluid (oil and gas) overpressure, in addition to weak material in the fault core, likely causes CRF creep. Plain Language Summary We used GPS‐derived horizontal velocities to study active faulting in Trinidad and Tobago, which span the Caribbean‐South American transform plate boundary. The principal transform fault, the Central Range Fault, accommodates 12–15 mm/yr (~70%) of the total plate motion via creep. Secondary fault zones north and south of Trinidad each accommodate ~3.5 mm/yr of the remaining dextral shear. Creep on the Central Range Fault may be due to petroleum overpressures. Key Points Caribbean‐South American relative plate motion is currently accommodated on three active dextral transform faults at the longitude of Trinidad: the South Tobago Terrane Fault (~3.5 mm/yr), the Central Range Fault (12–15 mm/yr), and the South Coast Fault (~3.5 mm/yr) We suggest that petroleum‐related overpressure may be the main cause of creep on the Central Range Fault</description><identifier>ISSN: 0278-7407</identifier><identifier>EISSN: 1944-9194</identifier><identifier>DOI: 10.1029/2019TC005530</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>active tectonics ; Caribbean‐South American plate boundary ; Earth ; Earthquakes ; fault creep ; Fault lines ; Fault zones ; Faults ; Geodetic measurements ; GPS ; overpressure ; Petroleum ; Plate boundaries ; Plate motion ; Plates ; Rock ; Rocks ; Seismic activity ; Shear ; Solifluction ; Transform faults ; Transform plate boundaries ; Trinidad‐Tobago</subject><ispartof>Tectonics (Washington, D.C.), 2020-01, Vol.39 (1), p.n/a</ispartof><rights>2019. American Geophysical Union. All Rights Reserved.</rights><rights>2020. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3304-c3e38107df7ab8ebd189b08aed164228262ca385fd58d51834a0fa6a28c51bb73</citedby><cites>FETCH-LOGICAL-a3304-c3e38107df7ab8ebd189b08aed164228262ca385fd58d51834a0fa6a28c51bb73</cites><orcidid>0000-0001-6053-2074 ; 0000-0002-8555-3661</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2019TC005530$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2019TC005530$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,11493,27901,27902,45550,45551,46384,46443,46808,46867</link.rule.ids></links><search><creatorcontrib>Weber, John</creatorcontrib><creatorcontrib>Geirsson, Halldor</creatorcontrib><creatorcontrib>La Femina, Peter</creatorcontrib><creatorcontrib>Robertson, Richard</creatorcontrib><creatorcontrib>Churches, Chris</creatorcontrib><creatorcontrib>Shaw, Kenton</creatorcontrib><creatorcontrib>Latchman, Joan</creatorcontrib><creatorcontrib>Higgins, Machel</creatorcontrib><creatorcontrib>Miller, Keith</creatorcontrib><title>Fault Creep and Strain Partitioning in Trinidad‐Tobago: Geodetic Measurements, Models, and Origin of Creep</title><title>Tectonics (Washington, D.C.)</title><description>The expansion of geodetic networks and Earth observing systems has allowed for new understandings of continental transform faults, including the partitioning of relative plate motions between multiple active strands and fault behavior during the earthquake cycle. One important global observation is that some continental transform faults creep (i.e., slip aseismically) at a percentage of or even at the full relative plate motion rate. The Caribbean‐South American plate boundary is a right‐stepping, segmented, dextral continental transform system. We studied active faults in the Trinidad‐Tobago segment of the Caribbean‐South American plate boundary zone using a new GPS‐derived horizontal velocity field, then modeled these data using a series of simple screw dislocation models. Our best‐fit model for interseismic strain accumulation requires 13.4 ± 0.3 mm/yr of right‐lateral movement and very shallow locking (0.2 ± 0.2 km), essentially creep, across the Central Range Fault (CRF), 3.4 ± 0.3 mm/yr across the South Coast Fault south of Trinidad, and 3.5 ± 0.3 mm/yr of dextral shear on fault(s) between Trinidad and Tobago. The CRF creeps along a physical boundary between rocks associated with thermogenically generated petroleum in south and central Trinidad and rocks containing only biogenic gas to the north. Fluid (oil and gas) overpressure, in addition to weak material in the fault core, likely causes CRF creep. Plain Language Summary We used GPS‐derived horizontal velocities to study active faulting in Trinidad and Tobago, which span the Caribbean‐South American transform plate boundary. The principal transform fault, the Central Range Fault, accommodates 12–15 mm/yr (~70%) of the total plate motion via creep. Secondary fault zones north and south of Trinidad each accommodate ~3.5 mm/yr of the remaining dextral shear. Creep on the Central Range Fault may be due to petroleum overpressures. Key Points Caribbean‐South American relative plate motion is currently accommodated on three active dextral transform faults at the longitude of Trinidad: the South Tobago Terrane Fault (~3.5 mm/yr), the Central Range Fault (12–15 mm/yr), and the South Coast Fault (~3.5 mm/yr) We suggest that petroleum‐related overpressure may be the main cause of creep on the Central Range Fault</description><subject>active tectonics</subject><subject>Caribbean‐South American plate boundary</subject><subject>Earth</subject><subject>Earthquakes</subject><subject>fault creep</subject><subject>Fault lines</subject><subject>Fault zones</subject><subject>Faults</subject><subject>Geodetic measurements</subject><subject>GPS</subject><subject>overpressure</subject><subject>Petroleum</subject><subject>Plate boundaries</subject><subject>Plate motion</subject><subject>Plates</subject><subject>Rock</subject><subject>Rocks</subject><subject>Seismic activity</subject><subject>Shear</subject><subject>Solifluction</subject><subject>Transform faults</subject><subject>Transform plate boundaries</subject><subject>Trinidad‐Tobago</subject><issn>0278-7407</issn><issn>1944-9194</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kM1Kw0AUhQdRsFZ3PsCA20bnL8nEnQRbhZYKxnW4yUzKlDRTZxKkOx_BZ_RJnBIXrtzcw7189xw4CF1TcksJy-4YoVmRExLHnJygCc2EiLIwT9GEsFRGqSDpObrwfksIFXGSTFA7h6Htce603mPoFH7tHZgOv4DrTW9sZ7oNDnvhTGcUqO_Pr8JWsLH3eKGt0r2p8UqDH5ze6a73M7wK1zbo0WztzCY822YMuERnDbReX_3qFL3NH4v8KVquF8_5wzICzomIaq65pCRVTQqV1JWiMquIBK1oIhiTLGE1cBk3KpYqppILIA0kwGQd06pK-RTdjL57Z98H7ftyawfXhciScZHGWRbaCNRspGpnvXe6KffO7MAdSkrKY5_l3z4Dzkf8w7T68C9bFo95wSijgv8AFnB3Aw</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Weber, John</creator><creator>Geirsson, Halldor</creator><creator>La Femina, Peter</creator><creator>Robertson, Richard</creator><creator>Churches, Chris</creator><creator>Shaw, Kenton</creator><creator>Latchman, Joan</creator><creator>Higgins, Machel</creator><creator>Miller, Keith</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><orcidid>https://orcid.org/0000-0001-6053-2074</orcidid><orcidid>https://orcid.org/0000-0002-8555-3661</orcidid></search><sort><creationdate>202001</creationdate><title>Fault Creep and Strain Partitioning in Trinidad‐Tobago: Geodetic Measurements, Models, and Origin of Creep</title><author>Weber, John ; Geirsson, Halldor ; La Femina, Peter ; Robertson, Richard ; Churches, Chris ; Shaw, Kenton ; Latchman, Joan ; Higgins, Machel ; Miller, Keith</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3304-c3e38107df7ab8ebd189b08aed164228262ca385fd58d51834a0fa6a28c51bb73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>active tectonics</topic><topic>Caribbean‐South American plate boundary</topic><topic>Earth</topic><topic>Earthquakes</topic><topic>fault creep</topic><topic>Fault lines</topic><topic>Fault zones</topic><topic>Faults</topic><topic>Geodetic measurements</topic><topic>GPS</topic><topic>overpressure</topic><topic>Petroleum</topic><topic>Plate boundaries</topic><topic>Plate motion</topic><topic>Plates</topic><topic>Rock</topic><topic>Rocks</topic><topic>Seismic activity</topic><topic>Shear</topic><topic>Solifluction</topic><topic>Transform faults</topic><topic>Transform plate boundaries</topic><topic>Trinidad‐Tobago</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weber, John</creatorcontrib><creatorcontrib>Geirsson, Halldor</creatorcontrib><creatorcontrib>La Femina, Peter</creatorcontrib><creatorcontrib>Robertson, Richard</creatorcontrib><creatorcontrib>Churches, Chris</creatorcontrib><creatorcontrib>Shaw, Kenton</creatorcontrib><creatorcontrib>Latchman, Joan</creatorcontrib><creatorcontrib>Higgins, Machel</creatorcontrib><creatorcontrib>Miller, Keith</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Tectonics (Washington, D.C.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weber, John</au><au>Geirsson, Halldor</au><au>La Femina, Peter</au><au>Robertson, Richard</au><au>Churches, Chris</au><au>Shaw, Kenton</au><au>Latchman, Joan</au><au>Higgins, Machel</au><au>Miller, Keith</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fault Creep and Strain Partitioning in Trinidad‐Tobago: Geodetic Measurements, Models, and Origin of Creep</atitle><jtitle>Tectonics (Washington, D.C.)</jtitle><date>2020-01</date><risdate>2020</risdate><volume>39</volume><issue>1</issue><epage>n/a</epage><issn>0278-7407</issn><eissn>1944-9194</eissn><abstract>The expansion of geodetic networks and Earth observing systems has allowed for new understandings of continental transform faults, including the partitioning of relative plate motions between multiple active strands and fault behavior during the earthquake cycle. One important global observation is that some continental transform faults creep (i.e., slip aseismically) at a percentage of or even at the full relative plate motion rate. The Caribbean‐South American plate boundary is a right‐stepping, segmented, dextral continental transform system. We studied active faults in the Trinidad‐Tobago segment of the Caribbean‐South American plate boundary zone using a new GPS‐derived horizontal velocity field, then modeled these data using a series of simple screw dislocation models. Our best‐fit model for interseismic strain accumulation requires 13.4 ± 0.3 mm/yr of right‐lateral movement and very shallow locking (0.2 ± 0.2 km), essentially creep, across the Central Range Fault (CRF), 3.4 ± 0.3 mm/yr across the South Coast Fault south of Trinidad, and 3.5 ± 0.3 mm/yr of dextral shear on fault(s) between Trinidad and Tobago. The CRF creeps along a physical boundary between rocks associated with thermogenically generated petroleum in south and central Trinidad and rocks containing only biogenic gas to the north. Fluid (oil and gas) overpressure, in addition to weak material in the fault core, likely causes CRF creep. Plain Language Summary We used GPS‐derived horizontal velocities to study active faulting in Trinidad and Tobago, which span the Caribbean‐South American transform plate boundary. The principal transform fault, the Central Range Fault, accommodates 12–15 mm/yr (~70%) of the total plate motion via creep. Secondary fault zones north and south of Trinidad each accommodate ~3.5 mm/yr of the remaining dextral shear. Creep on the Central Range Fault may be due to petroleum overpressures. Key Points Caribbean‐South American relative plate motion is currently accommodated on three active dextral transform faults at the longitude of Trinidad: the South Tobago Terrane Fault (~3.5 mm/yr), the Central Range Fault (12–15 mm/yr), and the South Coast Fault (~3.5 mm/yr) We suggest that petroleum‐related overpressure may be the main cause of creep on the Central Range Fault</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2019TC005530</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-6053-2074</orcidid><orcidid>https://orcid.org/0000-0002-8555-3661</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0278-7407
ispartof Tectonics (Washington, D.C.), 2020-01, Vol.39 (1), p.n/a
issn 0278-7407
1944-9194
language eng
recordid cdi_proquest_journals_2347599278
source Wiley Online Library Journals; Wiley Free Archive; Wiley-Blackwell AGU Digital Archive; EZB Electronic Journals Library
subjects active tectonics
Caribbean‐South American plate boundary
Earth
Earthquakes
fault creep
Fault lines
Fault zones
Faults
Geodetic measurements
GPS
overpressure
Petroleum
Plate boundaries
Plate motion
Plates
Rock
Rocks
Seismic activity
Shear
Solifluction
Transform faults
Transform plate boundaries
Trinidad‐Tobago
title Fault Creep and Strain Partitioning in Trinidad‐Tobago: Geodetic Measurements, Models, and Origin of Creep
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T14%3A50%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fault%20Creep%20and%20Strain%20Partitioning%20in%20Trinidad%E2%80%90Tobago:%20Geodetic%20Measurements,%20Models,%20and%20Origin%20of%20Creep&rft.jtitle=Tectonics%20(Washington,%20D.C.)&rft.au=Weber,%20John&rft.date=2020-01&rft.volume=39&rft.issue=1&rft.epage=n/a&rft.issn=0278-7407&rft.eissn=1944-9194&rft_id=info:doi/10.1029/2019TC005530&rft_dat=%3Cproquest_cross%3E2347599278%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2347599278&rft_id=info:pmid/&rfr_iscdi=true