Fault Creep and Strain Partitioning in Trinidad‐Tobago: Geodetic Measurements, Models, and Origin of Creep
The expansion of geodetic networks and Earth observing systems has allowed for new understandings of continental transform faults, including the partitioning of relative plate motions between multiple active strands and fault behavior during the earthquake cycle. One important global observation is...
Gespeichert in:
Veröffentlicht in: | Tectonics (Washington, D.C.) D.C.), 2020-01, Vol.39 (1), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Tectonics (Washington, D.C.) |
container_volume | 39 |
creator | Weber, John Geirsson, Halldor La Femina, Peter Robertson, Richard Churches, Chris Shaw, Kenton Latchman, Joan Higgins, Machel Miller, Keith |
description | The expansion of geodetic networks and Earth observing systems has allowed for new understandings of continental transform faults, including the partitioning of relative plate motions between multiple active strands and fault behavior during the earthquake cycle. One important global observation is that some continental transform faults creep (i.e., slip aseismically) at a percentage of or even at the full relative plate motion rate. The Caribbean‐South American plate boundary is a right‐stepping, segmented, dextral continental transform system. We studied active faults in the Trinidad‐Tobago segment of the Caribbean‐South American plate boundary zone using a new GPS‐derived horizontal velocity field, then modeled these data using a series of simple screw dislocation models. Our best‐fit model for interseismic strain accumulation requires 13.4 ± 0.3 mm/yr of right‐lateral movement and very shallow locking (0.2 ± 0.2 km), essentially creep, across the Central Range Fault (CRF), 3.4 ± 0.3 mm/yr across the South Coast Fault south of Trinidad, and 3.5 ± 0.3 mm/yr of dextral shear on fault(s) between Trinidad and Tobago. The CRF creeps along a physical boundary between rocks associated with thermogenically generated petroleum in south and central Trinidad and rocks containing only biogenic gas to the north. Fluid (oil and gas) overpressure, in addition to weak material in the fault core, likely causes CRF creep.
Plain Language Summary
We used GPS‐derived horizontal velocities to study active faulting in Trinidad and Tobago, which span the Caribbean‐South American transform plate boundary. The principal transform fault, the Central Range Fault, accommodates 12–15 mm/yr (~70%) of the total plate motion via creep. Secondary fault zones north and south of Trinidad each accommodate ~3.5 mm/yr of the remaining dextral shear. Creep on the Central Range Fault may be due to petroleum overpressures.
Key Points
Caribbean‐South American relative plate motion is currently accommodated on three active dextral transform faults at the longitude of Trinidad: the South Tobago Terrane Fault (~3.5 mm/yr), the Central Range Fault (12–15 mm/yr), and the South Coast Fault (~3.5 mm/yr)
We suggest that petroleum‐related overpressure may be the main cause of creep on the Central Range Fault |
doi_str_mv | 10.1029/2019TC005530 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2347599278</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2347599278</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3304-c3e38107df7ab8ebd189b08aed164228262ca385fd58d51834a0fa6a28c51bb73</originalsourceid><addsrcrecordid>eNp9kM1Kw0AUhQdRsFZ3PsCA20bnL8nEnQRbhZYKxnW4yUzKlDRTZxKkOx_BZ_RJnBIXrtzcw7189xw4CF1TcksJy-4YoVmRExLHnJygCc2EiLIwT9GEsFRGqSDpObrwfksIFXGSTFA7h6Htce603mPoFH7tHZgOv4DrTW9sZ7oNDnvhTGcUqO_Pr8JWsLH3eKGt0r2p8UqDH5ze6a73M7wK1zbo0WztzCY822YMuERnDbReX_3qFL3NH4v8KVquF8_5wzICzomIaq65pCRVTQqV1JWiMquIBK1oIhiTLGE1cBk3KpYqppILIA0kwGQd06pK-RTdjL57Z98H7ftyawfXhciScZHGWRbaCNRspGpnvXe6KffO7MAdSkrKY5_l3z4Dzkf8w7T68C9bFo95wSijgv8AFnB3Aw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2347599278</pqid></control><display><type>article</type><title>Fault Creep and Strain Partitioning in Trinidad‐Tobago: Geodetic Measurements, Models, and Origin of Creep</title><source>Wiley Online Library Journals</source><source>Wiley Free Archive</source><source>Wiley-Blackwell AGU Digital Archive</source><source>EZB Electronic Journals Library</source><creator>Weber, John ; Geirsson, Halldor ; La Femina, Peter ; Robertson, Richard ; Churches, Chris ; Shaw, Kenton ; Latchman, Joan ; Higgins, Machel ; Miller, Keith</creator><creatorcontrib>Weber, John ; Geirsson, Halldor ; La Femina, Peter ; Robertson, Richard ; Churches, Chris ; Shaw, Kenton ; Latchman, Joan ; Higgins, Machel ; Miller, Keith</creatorcontrib><description>The expansion of geodetic networks and Earth observing systems has allowed for new understandings of continental transform faults, including the partitioning of relative plate motions between multiple active strands and fault behavior during the earthquake cycle. One important global observation is that some continental transform faults creep (i.e., slip aseismically) at a percentage of or even at the full relative plate motion rate. The Caribbean‐South American plate boundary is a right‐stepping, segmented, dextral continental transform system. We studied active faults in the Trinidad‐Tobago segment of the Caribbean‐South American plate boundary zone using a new GPS‐derived horizontal velocity field, then modeled these data using a series of simple screw dislocation models. Our best‐fit model for interseismic strain accumulation requires 13.4 ± 0.3 mm/yr of right‐lateral movement and very shallow locking (0.2 ± 0.2 km), essentially creep, across the Central Range Fault (CRF), 3.4 ± 0.3 mm/yr across the South Coast Fault south of Trinidad, and 3.5 ± 0.3 mm/yr of dextral shear on fault(s) between Trinidad and Tobago. The CRF creeps along a physical boundary between rocks associated with thermogenically generated petroleum in south and central Trinidad and rocks containing only biogenic gas to the north. Fluid (oil and gas) overpressure, in addition to weak material in the fault core, likely causes CRF creep.
Plain Language Summary
We used GPS‐derived horizontal velocities to study active faulting in Trinidad and Tobago, which span the Caribbean‐South American transform plate boundary. The principal transform fault, the Central Range Fault, accommodates 12–15 mm/yr (~70%) of the total plate motion via creep. Secondary fault zones north and south of Trinidad each accommodate ~3.5 mm/yr of the remaining dextral shear. Creep on the Central Range Fault may be due to petroleum overpressures.
Key Points
Caribbean‐South American relative plate motion is currently accommodated on three active dextral transform faults at the longitude of Trinidad: the South Tobago Terrane Fault (~3.5 mm/yr), the Central Range Fault (12–15 mm/yr), and the South Coast Fault (~3.5 mm/yr)
We suggest that petroleum‐related overpressure may be the main cause of creep on the Central Range Fault</description><identifier>ISSN: 0278-7407</identifier><identifier>EISSN: 1944-9194</identifier><identifier>DOI: 10.1029/2019TC005530</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>active tectonics ; Caribbean‐South American plate boundary ; Earth ; Earthquakes ; fault creep ; Fault lines ; Fault zones ; Faults ; Geodetic measurements ; GPS ; overpressure ; Petroleum ; Plate boundaries ; Plate motion ; Plates ; Rock ; Rocks ; Seismic activity ; Shear ; Solifluction ; Transform faults ; Transform plate boundaries ; Trinidad‐Tobago</subject><ispartof>Tectonics (Washington, D.C.), 2020-01, Vol.39 (1), p.n/a</ispartof><rights>2019. American Geophysical Union. All Rights Reserved.</rights><rights>2020. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3304-c3e38107df7ab8ebd189b08aed164228262ca385fd58d51834a0fa6a28c51bb73</citedby><cites>FETCH-LOGICAL-a3304-c3e38107df7ab8ebd189b08aed164228262ca385fd58d51834a0fa6a28c51bb73</cites><orcidid>0000-0001-6053-2074 ; 0000-0002-8555-3661</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2019TC005530$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2019TC005530$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,11493,27901,27902,45550,45551,46384,46443,46808,46867</link.rule.ids></links><search><creatorcontrib>Weber, John</creatorcontrib><creatorcontrib>Geirsson, Halldor</creatorcontrib><creatorcontrib>La Femina, Peter</creatorcontrib><creatorcontrib>Robertson, Richard</creatorcontrib><creatorcontrib>Churches, Chris</creatorcontrib><creatorcontrib>Shaw, Kenton</creatorcontrib><creatorcontrib>Latchman, Joan</creatorcontrib><creatorcontrib>Higgins, Machel</creatorcontrib><creatorcontrib>Miller, Keith</creatorcontrib><title>Fault Creep and Strain Partitioning in Trinidad‐Tobago: Geodetic Measurements, Models, and Origin of Creep</title><title>Tectonics (Washington, D.C.)</title><description>The expansion of geodetic networks and Earth observing systems has allowed for new understandings of continental transform faults, including the partitioning of relative plate motions between multiple active strands and fault behavior during the earthquake cycle. One important global observation is that some continental transform faults creep (i.e., slip aseismically) at a percentage of or even at the full relative plate motion rate. The Caribbean‐South American plate boundary is a right‐stepping, segmented, dextral continental transform system. We studied active faults in the Trinidad‐Tobago segment of the Caribbean‐South American plate boundary zone using a new GPS‐derived horizontal velocity field, then modeled these data using a series of simple screw dislocation models. Our best‐fit model for interseismic strain accumulation requires 13.4 ± 0.3 mm/yr of right‐lateral movement and very shallow locking (0.2 ± 0.2 km), essentially creep, across the Central Range Fault (CRF), 3.4 ± 0.3 mm/yr across the South Coast Fault south of Trinidad, and 3.5 ± 0.3 mm/yr of dextral shear on fault(s) between Trinidad and Tobago. The CRF creeps along a physical boundary between rocks associated with thermogenically generated petroleum in south and central Trinidad and rocks containing only biogenic gas to the north. Fluid (oil and gas) overpressure, in addition to weak material in the fault core, likely causes CRF creep.
Plain Language Summary
We used GPS‐derived horizontal velocities to study active faulting in Trinidad and Tobago, which span the Caribbean‐South American transform plate boundary. The principal transform fault, the Central Range Fault, accommodates 12–15 mm/yr (~70%) of the total plate motion via creep. Secondary fault zones north and south of Trinidad each accommodate ~3.5 mm/yr of the remaining dextral shear. Creep on the Central Range Fault may be due to petroleum overpressures.
Key Points
Caribbean‐South American relative plate motion is currently accommodated on three active dextral transform faults at the longitude of Trinidad: the South Tobago Terrane Fault (~3.5 mm/yr), the Central Range Fault (12–15 mm/yr), and the South Coast Fault (~3.5 mm/yr)
We suggest that petroleum‐related overpressure may be the main cause of creep on the Central Range Fault</description><subject>active tectonics</subject><subject>Caribbean‐South American plate boundary</subject><subject>Earth</subject><subject>Earthquakes</subject><subject>fault creep</subject><subject>Fault lines</subject><subject>Fault zones</subject><subject>Faults</subject><subject>Geodetic measurements</subject><subject>GPS</subject><subject>overpressure</subject><subject>Petroleum</subject><subject>Plate boundaries</subject><subject>Plate motion</subject><subject>Plates</subject><subject>Rock</subject><subject>Rocks</subject><subject>Seismic activity</subject><subject>Shear</subject><subject>Solifluction</subject><subject>Transform faults</subject><subject>Transform plate boundaries</subject><subject>Trinidad‐Tobago</subject><issn>0278-7407</issn><issn>1944-9194</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kM1Kw0AUhQdRsFZ3PsCA20bnL8nEnQRbhZYKxnW4yUzKlDRTZxKkOx_BZ_RJnBIXrtzcw7189xw4CF1TcksJy-4YoVmRExLHnJygCc2EiLIwT9GEsFRGqSDpObrwfksIFXGSTFA7h6Htce603mPoFH7tHZgOv4DrTW9sZ7oNDnvhTGcUqO_Pr8JWsLH3eKGt0r2p8UqDH5ze6a73M7wK1zbo0WztzCY822YMuERnDbReX_3qFL3NH4v8KVquF8_5wzICzomIaq65pCRVTQqV1JWiMquIBK1oIhiTLGE1cBk3KpYqppILIA0kwGQd06pK-RTdjL57Z98H7ftyawfXhciScZHGWRbaCNRspGpnvXe6KffO7MAdSkrKY5_l3z4Dzkf8w7T68C9bFo95wSijgv8AFnB3Aw</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Weber, John</creator><creator>Geirsson, Halldor</creator><creator>La Femina, Peter</creator><creator>Robertson, Richard</creator><creator>Churches, Chris</creator><creator>Shaw, Kenton</creator><creator>Latchman, Joan</creator><creator>Higgins, Machel</creator><creator>Miller, Keith</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><orcidid>https://orcid.org/0000-0001-6053-2074</orcidid><orcidid>https://orcid.org/0000-0002-8555-3661</orcidid></search><sort><creationdate>202001</creationdate><title>Fault Creep and Strain Partitioning in Trinidad‐Tobago: Geodetic Measurements, Models, and Origin of Creep</title><author>Weber, John ; Geirsson, Halldor ; La Femina, Peter ; Robertson, Richard ; Churches, Chris ; Shaw, Kenton ; Latchman, Joan ; Higgins, Machel ; Miller, Keith</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3304-c3e38107df7ab8ebd189b08aed164228262ca385fd58d51834a0fa6a28c51bb73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>active tectonics</topic><topic>Caribbean‐South American plate boundary</topic><topic>Earth</topic><topic>Earthquakes</topic><topic>fault creep</topic><topic>Fault lines</topic><topic>Fault zones</topic><topic>Faults</topic><topic>Geodetic measurements</topic><topic>GPS</topic><topic>overpressure</topic><topic>Petroleum</topic><topic>Plate boundaries</topic><topic>Plate motion</topic><topic>Plates</topic><topic>Rock</topic><topic>Rocks</topic><topic>Seismic activity</topic><topic>Shear</topic><topic>Solifluction</topic><topic>Transform faults</topic><topic>Transform plate boundaries</topic><topic>Trinidad‐Tobago</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weber, John</creatorcontrib><creatorcontrib>Geirsson, Halldor</creatorcontrib><creatorcontrib>La Femina, Peter</creatorcontrib><creatorcontrib>Robertson, Richard</creatorcontrib><creatorcontrib>Churches, Chris</creatorcontrib><creatorcontrib>Shaw, Kenton</creatorcontrib><creatorcontrib>Latchman, Joan</creatorcontrib><creatorcontrib>Higgins, Machel</creatorcontrib><creatorcontrib>Miller, Keith</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Tectonics (Washington, D.C.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weber, John</au><au>Geirsson, Halldor</au><au>La Femina, Peter</au><au>Robertson, Richard</au><au>Churches, Chris</au><au>Shaw, Kenton</au><au>Latchman, Joan</au><au>Higgins, Machel</au><au>Miller, Keith</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fault Creep and Strain Partitioning in Trinidad‐Tobago: Geodetic Measurements, Models, and Origin of Creep</atitle><jtitle>Tectonics (Washington, D.C.)</jtitle><date>2020-01</date><risdate>2020</risdate><volume>39</volume><issue>1</issue><epage>n/a</epage><issn>0278-7407</issn><eissn>1944-9194</eissn><abstract>The expansion of geodetic networks and Earth observing systems has allowed for new understandings of continental transform faults, including the partitioning of relative plate motions between multiple active strands and fault behavior during the earthquake cycle. One important global observation is that some continental transform faults creep (i.e., slip aseismically) at a percentage of or even at the full relative plate motion rate. The Caribbean‐South American plate boundary is a right‐stepping, segmented, dextral continental transform system. We studied active faults in the Trinidad‐Tobago segment of the Caribbean‐South American plate boundary zone using a new GPS‐derived horizontal velocity field, then modeled these data using a series of simple screw dislocation models. Our best‐fit model for interseismic strain accumulation requires 13.4 ± 0.3 mm/yr of right‐lateral movement and very shallow locking (0.2 ± 0.2 km), essentially creep, across the Central Range Fault (CRF), 3.4 ± 0.3 mm/yr across the South Coast Fault south of Trinidad, and 3.5 ± 0.3 mm/yr of dextral shear on fault(s) between Trinidad and Tobago. The CRF creeps along a physical boundary between rocks associated with thermogenically generated petroleum in south and central Trinidad and rocks containing only biogenic gas to the north. Fluid (oil and gas) overpressure, in addition to weak material in the fault core, likely causes CRF creep.
Plain Language Summary
We used GPS‐derived horizontal velocities to study active faulting in Trinidad and Tobago, which span the Caribbean‐South American transform plate boundary. The principal transform fault, the Central Range Fault, accommodates 12–15 mm/yr (~70%) of the total plate motion via creep. Secondary fault zones north and south of Trinidad each accommodate ~3.5 mm/yr of the remaining dextral shear. Creep on the Central Range Fault may be due to petroleum overpressures.
Key Points
Caribbean‐South American relative plate motion is currently accommodated on three active dextral transform faults at the longitude of Trinidad: the South Tobago Terrane Fault (~3.5 mm/yr), the Central Range Fault (12–15 mm/yr), and the South Coast Fault (~3.5 mm/yr)
We suggest that petroleum‐related overpressure may be the main cause of creep on the Central Range Fault</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2019TC005530</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-6053-2074</orcidid><orcidid>https://orcid.org/0000-0002-8555-3661</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0278-7407 |
ispartof | Tectonics (Washington, D.C.), 2020-01, Vol.39 (1), p.n/a |
issn | 0278-7407 1944-9194 |
language | eng |
recordid | cdi_proquest_journals_2347599278 |
source | Wiley Online Library Journals; Wiley Free Archive; Wiley-Blackwell AGU Digital Archive; EZB Electronic Journals Library |
subjects | active tectonics Caribbean‐South American plate boundary Earth Earthquakes fault creep Fault lines Fault zones Faults Geodetic measurements GPS overpressure Petroleum Plate boundaries Plate motion Plates Rock Rocks Seismic activity Shear Solifluction Transform faults Transform plate boundaries Trinidad‐Tobago |
title | Fault Creep and Strain Partitioning in Trinidad‐Tobago: Geodetic Measurements, Models, and Origin of Creep |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T14%3A50%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fault%20Creep%20and%20Strain%20Partitioning%20in%20Trinidad%E2%80%90Tobago:%20Geodetic%20Measurements,%20Models,%20and%20Origin%20of%20Creep&rft.jtitle=Tectonics%20(Washington,%20D.C.)&rft.au=Weber,%20John&rft.date=2020-01&rft.volume=39&rft.issue=1&rft.epage=n/a&rft.issn=0278-7407&rft.eissn=1944-9194&rft_id=info:doi/10.1029/2019TC005530&rft_dat=%3Cproquest_cross%3E2347599278%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2347599278&rft_id=info:pmid/&rfr_iscdi=true |