Enhanced Ionic/Electronic Transport in Nano‐TiO2/Sheared CNT Composite Electrode for Na+ Insertion‐based Hybrid Ion‐Capacitors

Ion‐insertion capacitors show promise to bridge the gap between supercapacitors of high power densities and batteries of high energy densities. While research efforts have primarily focused on Li+‐based capacitors (LICs), Na+‐based capacitors (SICs) are theoretically cheaper and more sustainable. Ow...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2020-01, Vol.30 (5), p.n/a
Hauptverfasser: Luo, Sainan, Yuan, Tao, Soule, Luke, Ruan, Jiafeng, Zhao, Yahui, Sun, Dalin, Yang, Junhe, Liu, Meilin, Zheng, Shiyou
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 5
container_start_page
container_title Advanced functional materials
container_volume 30
creator Luo, Sainan
Yuan, Tao
Soule, Luke
Ruan, Jiafeng
Zhao, Yahui
Sun, Dalin
Yang, Junhe
Liu, Meilin
Zheng, Shiyou
description Ion‐insertion capacitors show promise to bridge the gap between supercapacitors of high power densities and batteries of high energy densities. While research efforts have primarily focused on Li+‐based capacitors (LICs), Na+‐based capacitors (SICs) are theoretically cheaper and more sustainable. Owing to the larger size of Na+ compared to Li+, finding high‐rate anode materials for SICs has been challenging. Herein, an SIC anode architecture is reported consisting of TiO2 nanoparticles anchored on a sheared‐carbon nanotubes backbone (TiO2/SCNT). The SCNT architecture provides advantages over other carbon architectures commonly used, such as reduced graphene oxide and CNT. In a half‐cell, the TiO2/SCNT electrode shows a capacity of 267 mAh g−1 at a 1 C charge/discharge rate and a capacity of 136 mAh g−1 at 10 C while maintaining 87% of initial capacity over 1000 cycles. When combined with activated carbon (AC) in a full cell, an energy density and power density of 54.9 Wh kg−1 and 1410 W kg−1, respectively, are achieved while retaining a 90% capacity retention over 5000 cycles. The favorable rate capability, energy and power density, and durability of the electrode is attributed to the enhanced electronic and Na+ conductivity of the TiO2/SCNT architecture. This work presents a high‐performance 3D TiO2/sheared‐carbon nanotube (SCNT) anodic material for Na+‐based capacitors (SICs) using a framework that combines the benefits of reduced graphene oxide and CNTs to enable high rate capability and stability. The TiO2/SCNT composite anode is used in a SIC and exhibits gravimetric and volumetric power densities of 54.9 Wh kg–1 and 1410 W kg–1, respectively.
doi_str_mv 10.1002/adfm.201908309
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2347555525</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2347555525</sourcerecordid><originalsourceid>FETCH-LOGICAL-g3389-854f1bfec5788ef0a6001477a8fa00bfd90eee60b023a80aaa5bb8cb0970ab973</originalsourceid><addsrcrecordid>eNo9UE1PwkAQbYwmInr13MSjKcx2-7E9kgpCgnCwJt6a2XYrS2C37pYYbh78Af5Gf4mLGOYybybvzcs8z7slMCAA4RDrZjsIgWTAKGRnXo8kJAkohOz8hMnrpXdl7RqApCmNet7XWK1QVaL2Z1rJajjeiKozB-gXBpVttel8qfwFKv3z-V3IZTh8Xgk0TpEvCj_X21Zb2Qn_X1kLv9HG8e_9mbLCdFIrJ-RonWK650b-WblVji1WstPGXnsXDW6suPnvfe9lMi7yaTBfPs7y0Tx4o5RlAYujhvBGVHHKmGgAE_dGlKbIGgTgTZ2BECIBDiFFBogYc84qDlkKyLOU9r27493W6PedsF251jujnGUZ0iiNXYWxY2VH1ofciH3ZGrlFsy8JlIeYy0PM5SnmcvQweTpN9BdywXeU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2347555525</pqid></control><display><type>article</type><title>Enhanced Ionic/Electronic Transport in Nano‐TiO2/Sheared CNT Composite Electrode for Na+ Insertion‐based Hybrid Ion‐Capacitors</title><source>Access via Wiley Online Library</source><creator>Luo, Sainan ; Yuan, Tao ; Soule, Luke ; Ruan, Jiafeng ; Zhao, Yahui ; Sun, Dalin ; Yang, Junhe ; Liu, Meilin ; Zheng, Shiyou</creator><creatorcontrib>Luo, Sainan ; Yuan, Tao ; Soule, Luke ; Ruan, Jiafeng ; Zhao, Yahui ; Sun, Dalin ; Yang, Junhe ; Liu, Meilin ; Zheng, Shiyou</creatorcontrib><description>Ion‐insertion capacitors show promise to bridge the gap between supercapacitors of high power densities and batteries of high energy densities. While research efforts have primarily focused on Li+‐based capacitors (LICs), Na+‐based capacitors (SICs) are theoretically cheaper and more sustainable. Owing to the larger size of Na+ compared to Li+, finding high‐rate anode materials for SICs has been challenging. Herein, an SIC anode architecture is reported consisting of TiO2 nanoparticles anchored on a sheared‐carbon nanotubes backbone (TiO2/SCNT). The SCNT architecture provides advantages over other carbon architectures commonly used, such as reduced graphene oxide and CNT. In a half‐cell, the TiO2/SCNT electrode shows a capacity of 267 mAh g−1 at a 1 C charge/discharge rate and a capacity of 136 mAh g−1 at 10 C while maintaining 87% of initial capacity over 1000 cycles. When combined with activated carbon (AC) in a full cell, an energy density and power density of 54.9 Wh kg−1 and 1410 W kg−1, respectively, are achieved while retaining a 90% capacity retention over 5000 cycles. The favorable rate capability, energy and power density, and durability of the electrode is attributed to the enhanced electronic and Na+ conductivity of the TiO2/SCNT architecture. This work presents a high‐performance 3D TiO2/sheared‐carbon nanotube (SCNT) anodic material for Na+‐based capacitors (SICs) using a framework that combines the benefits of reduced graphene oxide and CNTs to enable high rate capability and stability. The TiO2/SCNT composite anode is used in a SIC and exhibits gravimetric and volumetric power densities of 54.9 Wh kg–1 and 1410 W kg–1, respectively.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201908309</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Activated carbon ; Anodes ; Architecture ; Capacitors ; Carbon ; Carbon nanotubes ; Electrode materials ; Electrodes ; Electron transport ; Flux density ; Graphene ; hybrid Na+ capacitors ; Insertion ; Materials science ; Nanoparticles ; sheared CNT frameworks ; Sodium ; TiO2 nanoparticles ; Titanium dioxide</subject><ispartof>Advanced functional materials, 2020-01, Vol.30 (5), p.n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2020 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-3012-1324 ; 0000-0002-6188-2372 ; 0000-0003-1869-9270 ; 0000-0002-6614-9567 ; 0000-0002-7915-1869</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.201908309$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.201908309$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Luo, Sainan</creatorcontrib><creatorcontrib>Yuan, Tao</creatorcontrib><creatorcontrib>Soule, Luke</creatorcontrib><creatorcontrib>Ruan, Jiafeng</creatorcontrib><creatorcontrib>Zhao, Yahui</creatorcontrib><creatorcontrib>Sun, Dalin</creatorcontrib><creatorcontrib>Yang, Junhe</creatorcontrib><creatorcontrib>Liu, Meilin</creatorcontrib><creatorcontrib>Zheng, Shiyou</creatorcontrib><title>Enhanced Ionic/Electronic Transport in Nano‐TiO2/Sheared CNT Composite Electrode for Na+ Insertion‐based Hybrid Ion‐Capacitors</title><title>Advanced functional materials</title><description>Ion‐insertion capacitors show promise to bridge the gap between supercapacitors of high power densities and batteries of high energy densities. While research efforts have primarily focused on Li+‐based capacitors (LICs), Na+‐based capacitors (SICs) are theoretically cheaper and more sustainable. Owing to the larger size of Na+ compared to Li+, finding high‐rate anode materials for SICs has been challenging. Herein, an SIC anode architecture is reported consisting of TiO2 nanoparticles anchored on a sheared‐carbon nanotubes backbone (TiO2/SCNT). The SCNT architecture provides advantages over other carbon architectures commonly used, such as reduced graphene oxide and CNT. In a half‐cell, the TiO2/SCNT electrode shows a capacity of 267 mAh g−1 at a 1 C charge/discharge rate and a capacity of 136 mAh g−1 at 10 C while maintaining 87% of initial capacity over 1000 cycles. When combined with activated carbon (AC) in a full cell, an energy density and power density of 54.9 Wh kg−1 and 1410 W kg−1, respectively, are achieved while retaining a 90% capacity retention over 5000 cycles. The favorable rate capability, energy and power density, and durability of the electrode is attributed to the enhanced electronic and Na+ conductivity of the TiO2/SCNT architecture. This work presents a high‐performance 3D TiO2/sheared‐carbon nanotube (SCNT) anodic material for Na+‐based capacitors (SICs) using a framework that combines the benefits of reduced graphene oxide and CNTs to enable high rate capability and stability. The TiO2/SCNT composite anode is used in a SIC and exhibits gravimetric and volumetric power densities of 54.9 Wh kg–1 and 1410 W kg–1, respectively.</description><subject>Activated carbon</subject><subject>Anodes</subject><subject>Architecture</subject><subject>Capacitors</subject><subject>Carbon</subject><subject>Carbon nanotubes</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Electron transport</subject><subject>Flux density</subject><subject>Graphene</subject><subject>hybrid Na+ capacitors</subject><subject>Insertion</subject><subject>Materials science</subject><subject>Nanoparticles</subject><subject>sheared CNT frameworks</subject><subject>Sodium</subject><subject>TiO2 nanoparticles</subject><subject>Titanium dioxide</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9UE1PwkAQbYwmInr13MSjKcx2-7E9kgpCgnCwJt6a2XYrS2C37pYYbh78Af5Gf4mLGOYybybvzcs8z7slMCAA4RDrZjsIgWTAKGRnXo8kJAkohOz8hMnrpXdl7RqApCmNet7XWK1QVaL2Z1rJajjeiKozB-gXBpVttel8qfwFKv3z-V3IZTh8Xgk0TpEvCj_X21Zb2Qn_X1kLv9HG8e_9mbLCdFIrJ-RonWK650b-WblVji1WstPGXnsXDW6suPnvfe9lMi7yaTBfPs7y0Tx4o5RlAYujhvBGVHHKmGgAE_dGlKbIGgTgTZ2BECIBDiFFBogYc84qDlkKyLOU9r27493W6PedsF251jujnGUZ0iiNXYWxY2VH1ofciH3ZGrlFsy8JlIeYy0PM5SnmcvQweTpN9BdywXeU</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Luo, Sainan</creator><creator>Yuan, Tao</creator><creator>Soule, Luke</creator><creator>Ruan, Jiafeng</creator><creator>Zhao, Yahui</creator><creator>Sun, Dalin</creator><creator>Yang, Junhe</creator><creator>Liu, Meilin</creator><creator>Zheng, Shiyou</creator><general>Wiley Subscription Services, Inc</general><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3012-1324</orcidid><orcidid>https://orcid.org/0000-0002-6188-2372</orcidid><orcidid>https://orcid.org/0000-0003-1869-9270</orcidid><orcidid>https://orcid.org/0000-0002-6614-9567</orcidid><orcidid>https://orcid.org/0000-0002-7915-1869</orcidid></search><sort><creationdate>20200101</creationdate><title>Enhanced Ionic/Electronic Transport in Nano‐TiO2/Sheared CNT Composite Electrode for Na+ Insertion‐based Hybrid Ion‐Capacitors</title><author>Luo, Sainan ; Yuan, Tao ; Soule, Luke ; Ruan, Jiafeng ; Zhao, Yahui ; Sun, Dalin ; Yang, Junhe ; Liu, Meilin ; Zheng, Shiyou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g3389-854f1bfec5788ef0a6001477a8fa00bfd90eee60b023a80aaa5bb8cb0970ab973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Activated carbon</topic><topic>Anodes</topic><topic>Architecture</topic><topic>Capacitors</topic><topic>Carbon</topic><topic>Carbon nanotubes</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Electron transport</topic><topic>Flux density</topic><topic>Graphene</topic><topic>hybrid Na+ capacitors</topic><topic>Insertion</topic><topic>Materials science</topic><topic>Nanoparticles</topic><topic>sheared CNT frameworks</topic><topic>Sodium</topic><topic>TiO2 nanoparticles</topic><topic>Titanium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Sainan</creatorcontrib><creatorcontrib>Yuan, Tao</creatorcontrib><creatorcontrib>Soule, Luke</creatorcontrib><creatorcontrib>Ruan, Jiafeng</creatorcontrib><creatorcontrib>Zhao, Yahui</creatorcontrib><creatorcontrib>Sun, Dalin</creatorcontrib><creatorcontrib>Yang, Junhe</creatorcontrib><creatorcontrib>Liu, Meilin</creatorcontrib><creatorcontrib>Zheng, Shiyou</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Sainan</au><au>Yuan, Tao</au><au>Soule, Luke</au><au>Ruan, Jiafeng</au><au>Zhao, Yahui</au><au>Sun, Dalin</au><au>Yang, Junhe</au><au>Liu, Meilin</au><au>Zheng, Shiyou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced Ionic/Electronic Transport in Nano‐TiO2/Sheared CNT Composite Electrode for Na+ Insertion‐based Hybrid Ion‐Capacitors</atitle><jtitle>Advanced functional materials</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>30</volume><issue>5</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Ion‐insertion capacitors show promise to bridge the gap between supercapacitors of high power densities and batteries of high energy densities. While research efforts have primarily focused on Li+‐based capacitors (LICs), Na+‐based capacitors (SICs) are theoretically cheaper and more sustainable. Owing to the larger size of Na+ compared to Li+, finding high‐rate anode materials for SICs has been challenging. Herein, an SIC anode architecture is reported consisting of TiO2 nanoparticles anchored on a sheared‐carbon nanotubes backbone (TiO2/SCNT). The SCNT architecture provides advantages over other carbon architectures commonly used, such as reduced graphene oxide and CNT. In a half‐cell, the TiO2/SCNT electrode shows a capacity of 267 mAh g−1 at a 1 C charge/discharge rate and a capacity of 136 mAh g−1 at 10 C while maintaining 87% of initial capacity over 1000 cycles. When combined with activated carbon (AC) in a full cell, an energy density and power density of 54.9 Wh kg−1 and 1410 W kg−1, respectively, are achieved while retaining a 90% capacity retention over 5000 cycles. The favorable rate capability, energy and power density, and durability of the electrode is attributed to the enhanced electronic and Na+ conductivity of the TiO2/SCNT architecture. This work presents a high‐performance 3D TiO2/sheared‐carbon nanotube (SCNT) anodic material for Na+‐based capacitors (SICs) using a framework that combines the benefits of reduced graphene oxide and CNTs to enable high rate capability and stability. The TiO2/SCNT composite anode is used in a SIC and exhibits gravimetric and volumetric power densities of 54.9 Wh kg–1 and 1410 W kg–1, respectively.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.201908309</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-3012-1324</orcidid><orcidid>https://orcid.org/0000-0002-6188-2372</orcidid><orcidid>https://orcid.org/0000-0003-1869-9270</orcidid><orcidid>https://orcid.org/0000-0002-6614-9567</orcidid><orcidid>https://orcid.org/0000-0002-7915-1869</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2020-01, Vol.30 (5), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2347555525
source Access via Wiley Online Library
subjects Activated carbon
Anodes
Architecture
Capacitors
Carbon
Carbon nanotubes
Electrode materials
Electrodes
Electron transport
Flux density
Graphene
hybrid Na+ capacitors
Insertion
Materials science
Nanoparticles
sheared CNT frameworks
Sodium
TiO2 nanoparticles
Titanium dioxide
title Enhanced Ionic/Electronic Transport in Nano‐TiO2/Sheared CNT Composite Electrode for Na+ Insertion‐based Hybrid Ion‐Capacitors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T19%3A21%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20Ionic/Electronic%20Transport%20in%20Nano%E2%80%90TiO2/Sheared%20CNT%20Composite%20Electrode%20for%20Na+%20Insertion%E2%80%90based%20Hybrid%20Ion%E2%80%90Capacitors&rft.jtitle=Advanced%20functional%20materials&rft.au=Luo,%20Sainan&rft.date=2020-01-01&rft.volume=30&rft.issue=5&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201908309&rft_dat=%3Cproquest_wiley%3E2347555525%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2347555525&rft_id=info:pmid/&rfr_iscdi=true