Graphene Oxide‐Templated Conductive and Redox‐Active Nanosheets Incorporated Hydrogels for Adhesive Bioelectronics
2D conductive nanosheets are central to electronic applications because of their large surface areas and excellent electronic properties. However, tuning the multifunctions and hydrophilicity of conductive nanosheets are still challenging. Herein, a green strategy is developed for fabricating conduc...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2020-01, Vol.30 (5), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 5 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 30 |
creator | Gan, Donglin Huang, Ziqiang Wang, Xiao Jiang, Lili Wang, Chaoming Zhu, Mingyu Ren, Fuzeng Fang, Liming Wang, Kefeng Xie, Chaoming Lu, Xiong |
description | 2D conductive nanosheets are central to electronic applications because of their large surface areas and excellent electronic properties. However, tuning the multifunctions and hydrophilicity of conductive nanosheets are still challenging. Herein, a green strategy is developed for fabricating conductive, redox‐active, water‐soluble nanosheets via the self‐assembly of poly(3,4‐ethylenedioxythiophene) (PEDOT) on the polydopamine‐reduced and sulfonated graphene oxide (PSGO) template. The conductivity and hydrophilicity of nanosheets are highly improved by PSGO. The nanosheets are redox active due to the abundant catechol groups and can be used as versatile nanofillers in developing conductive and adhesive hydrogels. The nanosheets create a mussel‐inspired redox environment inside the hydrogel networks and endow the hydrogel with long‐term and repeatable adhesiveness. This hydrogel is biocompatible and can be implanted for biosignals detection in vivo. This mussel‐inspired strategy for assembling 2D nanosheets can be adapted for producing diverse multifunctional nanomaterials, with various potential applications in bioelectronics.
Inspired by redox reactions in nature, a green and cost‐effective strategy is developed for designing hydrophilic, conductive, and redox‐active sandwich‐like 2D nanosheets via the self‐assembly of poly(3,4‐ethylenedioxythiophene) (PEDOT) on a functional graphene oxide (PSGO) template. The 2D nanosheet can be used as a versatile nanofiller in the development of a conductive and adhesive hydrogel for bioelectronic applications. |
doi_str_mv | 10.1002/adfm.201907678 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2347552048</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2347552048</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3838-e60f85fe26f7269ff8c49e4b1e586256f68b9b4aa1ed912bdc546858122590bf3</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRSMEElDYso7EOsV2YsdZhkIfUqESKhK7yLHHNFUaBzst7Y5P4Bv5ElKCypLVXI3OmZGu511h1McIkRuh9KpPEE5QzGJ-5J1hhlkQIsKPDxm_nHrnzi0RwnEcRmfeZmRFvYAK_Nm2UPD18TmHVV2KBpQ_MJVay6bYgC8q5T-BMtsWSLvVo6iMWwA0zp9U0tja2B9rvFPWvELpfG2sn6oFuD1-WxgoQTbWVIV0F96JFqWDy9_Z856H9_PBOJjORpNBOg1kyEMeAEOaUw2E6ZiwRGsuowSiHAPljFCmGc-TPBICg0owyZWkEeOUY0JognId9rzr7m5tzdsaXJMtzdpW7cuMhFFMKUERb6l-R0lrnLOgs9oWK2F3GUbZvtts32126LYVkk54L0rY_UNn6d3w4c_9BuuQgZg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2347552048</pqid></control><display><type>article</type><title>Graphene Oxide‐Templated Conductive and Redox‐Active Nanosheets Incorporated Hydrogels for Adhesive Bioelectronics</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Gan, Donglin ; Huang, Ziqiang ; Wang, Xiao ; Jiang, Lili ; Wang, Chaoming ; Zhu, Mingyu ; Ren, Fuzeng ; Fang, Liming ; Wang, Kefeng ; Xie, Chaoming ; Lu, Xiong</creator><creatorcontrib>Gan, Donglin ; Huang, Ziqiang ; Wang, Xiao ; Jiang, Lili ; Wang, Chaoming ; Zhu, Mingyu ; Ren, Fuzeng ; Fang, Liming ; Wang, Kefeng ; Xie, Chaoming ; Lu, Xiong</creatorcontrib><description>2D conductive nanosheets are central to electronic applications because of their large surface areas and excellent electronic properties. However, tuning the multifunctions and hydrophilicity of conductive nanosheets are still challenging. Herein, a green strategy is developed for fabricating conductive, redox‐active, water‐soluble nanosheets via the self‐assembly of poly(3,4‐ethylenedioxythiophene) (PEDOT) on the polydopamine‐reduced and sulfonated graphene oxide (PSGO) template. The conductivity and hydrophilicity of nanosheets are highly improved by PSGO. The nanosheets are redox active due to the abundant catechol groups and can be used as versatile nanofillers in developing conductive and adhesive hydrogels. The nanosheets create a mussel‐inspired redox environment inside the hydrogel networks and endow the hydrogel with long‐term and repeatable adhesiveness. This hydrogel is biocompatible and can be implanted for biosignals detection in vivo. This mussel‐inspired strategy for assembling 2D nanosheets can be adapted for producing diverse multifunctional nanomaterials, with various potential applications in bioelectronics.
Inspired by redox reactions in nature, a green and cost‐effective strategy is developed for designing hydrophilic, conductive, and redox‐active sandwich‐like 2D nanosheets via the self‐assembly of poly(3,4‐ethylenedioxythiophene) (PEDOT) on a functional graphene oxide (PSGO) template. The 2D nanosheet can be used as a versatile nanofiller in the development of a conductive and adhesive hydrogel for bioelectronic applications.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201907678</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>adhesive bioelectronics ; adhesive hydrogels ; Assembling ; Biocompatibility ; Catechol ; conductive hydrogels ; conductive nanosheets ; Conductivity ; Electronic properties ; Graphene ; Hydrogels ; Hydrophilicity ; Materials science ; Nanomaterials ; Nanosheets ; redox‐active nanosheets ; Surgical implants</subject><ispartof>Advanced functional materials, 2020-01, Vol.30 (5), p.n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3838-e60f85fe26f7269ff8c49e4b1e586256f68b9b4aa1ed912bdc546858122590bf3</citedby><cites>FETCH-LOGICAL-c3838-e60f85fe26f7269ff8c49e4b1e586256f68b9b4aa1ed912bdc546858122590bf3</cites><orcidid>0000-0001-6367-430X ; 0000-0002-6916-675X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.201907678$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.201907678$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Gan, Donglin</creatorcontrib><creatorcontrib>Huang, Ziqiang</creatorcontrib><creatorcontrib>Wang, Xiao</creatorcontrib><creatorcontrib>Jiang, Lili</creatorcontrib><creatorcontrib>Wang, Chaoming</creatorcontrib><creatorcontrib>Zhu, Mingyu</creatorcontrib><creatorcontrib>Ren, Fuzeng</creatorcontrib><creatorcontrib>Fang, Liming</creatorcontrib><creatorcontrib>Wang, Kefeng</creatorcontrib><creatorcontrib>Xie, Chaoming</creatorcontrib><creatorcontrib>Lu, Xiong</creatorcontrib><title>Graphene Oxide‐Templated Conductive and Redox‐Active Nanosheets Incorporated Hydrogels for Adhesive Bioelectronics</title><title>Advanced functional materials</title><description>2D conductive nanosheets are central to electronic applications because of their large surface areas and excellent electronic properties. However, tuning the multifunctions and hydrophilicity of conductive nanosheets are still challenging. Herein, a green strategy is developed for fabricating conductive, redox‐active, water‐soluble nanosheets via the self‐assembly of poly(3,4‐ethylenedioxythiophene) (PEDOT) on the polydopamine‐reduced and sulfonated graphene oxide (PSGO) template. The conductivity and hydrophilicity of nanosheets are highly improved by PSGO. The nanosheets are redox active due to the abundant catechol groups and can be used as versatile nanofillers in developing conductive and adhesive hydrogels. The nanosheets create a mussel‐inspired redox environment inside the hydrogel networks and endow the hydrogel with long‐term and repeatable adhesiveness. This hydrogel is biocompatible and can be implanted for biosignals detection in vivo. This mussel‐inspired strategy for assembling 2D nanosheets can be adapted for producing diverse multifunctional nanomaterials, with various potential applications in bioelectronics.
Inspired by redox reactions in nature, a green and cost‐effective strategy is developed for designing hydrophilic, conductive, and redox‐active sandwich‐like 2D nanosheets via the self‐assembly of poly(3,4‐ethylenedioxythiophene) (PEDOT) on a functional graphene oxide (PSGO) template. The 2D nanosheet can be used as a versatile nanofiller in the development of a conductive and adhesive hydrogel for bioelectronic applications.</description><subject>adhesive bioelectronics</subject><subject>adhesive hydrogels</subject><subject>Assembling</subject><subject>Biocompatibility</subject><subject>Catechol</subject><subject>conductive hydrogels</subject><subject>conductive nanosheets</subject><subject>Conductivity</subject><subject>Electronic properties</subject><subject>Graphene</subject><subject>Hydrogels</subject><subject>Hydrophilicity</subject><subject>Materials science</subject><subject>Nanomaterials</subject><subject>Nanosheets</subject><subject>redox‐active nanosheets</subject><subject>Surgical implants</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRSMEElDYso7EOsV2YsdZhkIfUqESKhK7yLHHNFUaBzst7Y5P4Bv5ElKCypLVXI3OmZGu511h1McIkRuh9KpPEE5QzGJ-5J1hhlkQIsKPDxm_nHrnzi0RwnEcRmfeZmRFvYAK_Nm2UPD18TmHVV2KBpQ_MJVay6bYgC8q5T-BMtsWSLvVo6iMWwA0zp9U0tja2B9rvFPWvELpfG2sn6oFuD1-WxgoQTbWVIV0F96JFqWDy9_Z856H9_PBOJjORpNBOg1kyEMeAEOaUw2E6ZiwRGsuowSiHAPljFCmGc-TPBICg0owyZWkEeOUY0JognId9rzr7m5tzdsaXJMtzdpW7cuMhFFMKUERb6l-R0lrnLOgs9oWK2F3GUbZvtts32126LYVkk54L0rY_UNn6d3w4c_9BuuQgZg</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Gan, Donglin</creator><creator>Huang, Ziqiang</creator><creator>Wang, Xiao</creator><creator>Jiang, Lili</creator><creator>Wang, Chaoming</creator><creator>Zhu, Mingyu</creator><creator>Ren, Fuzeng</creator><creator>Fang, Liming</creator><creator>Wang, Kefeng</creator><creator>Xie, Chaoming</creator><creator>Lu, Xiong</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6367-430X</orcidid><orcidid>https://orcid.org/0000-0002-6916-675X</orcidid></search><sort><creationdate>20200101</creationdate><title>Graphene Oxide‐Templated Conductive and Redox‐Active Nanosheets Incorporated Hydrogels for Adhesive Bioelectronics</title><author>Gan, Donglin ; Huang, Ziqiang ; Wang, Xiao ; Jiang, Lili ; Wang, Chaoming ; Zhu, Mingyu ; Ren, Fuzeng ; Fang, Liming ; Wang, Kefeng ; Xie, Chaoming ; Lu, Xiong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3838-e60f85fe26f7269ff8c49e4b1e586256f68b9b4aa1ed912bdc546858122590bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>adhesive bioelectronics</topic><topic>adhesive hydrogels</topic><topic>Assembling</topic><topic>Biocompatibility</topic><topic>Catechol</topic><topic>conductive hydrogels</topic><topic>conductive nanosheets</topic><topic>Conductivity</topic><topic>Electronic properties</topic><topic>Graphene</topic><topic>Hydrogels</topic><topic>Hydrophilicity</topic><topic>Materials science</topic><topic>Nanomaterials</topic><topic>Nanosheets</topic><topic>redox‐active nanosheets</topic><topic>Surgical implants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gan, Donglin</creatorcontrib><creatorcontrib>Huang, Ziqiang</creatorcontrib><creatorcontrib>Wang, Xiao</creatorcontrib><creatorcontrib>Jiang, Lili</creatorcontrib><creatorcontrib>Wang, Chaoming</creatorcontrib><creatorcontrib>Zhu, Mingyu</creatorcontrib><creatorcontrib>Ren, Fuzeng</creatorcontrib><creatorcontrib>Fang, Liming</creatorcontrib><creatorcontrib>Wang, Kefeng</creatorcontrib><creatorcontrib>Xie, Chaoming</creatorcontrib><creatorcontrib>Lu, Xiong</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gan, Donglin</au><au>Huang, Ziqiang</au><au>Wang, Xiao</au><au>Jiang, Lili</au><au>Wang, Chaoming</au><au>Zhu, Mingyu</au><au>Ren, Fuzeng</au><au>Fang, Liming</au><au>Wang, Kefeng</au><au>Xie, Chaoming</au><au>Lu, Xiong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graphene Oxide‐Templated Conductive and Redox‐Active Nanosheets Incorporated Hydrogels for Adhesive Bioelectronics</atitle><jtitle>Advanced functional materials</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>30</volume><issue>5</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>2D conductive nanosheets are central to electronic applications because of their large surface areas and excellent electronic properties. However, tuning the multifunctions and hydrophilicity of conductive nanosheets are still challenging. Herein, a green strategy is developed for fabricating conductive, redox‐active, water‐soluble nanosheets via the self‐assembly of poly(3,4‐ethylenedioxythiophene) (PEDOT) on the polydopamine‐reduced and sulfonated graphene oxide (PSGO) template. The conductivity and hydrophilicity of nanosheets are highly improved by PSGO. The nanosheets are redox active due to the abundant catechol groups and can be used as versatile nanofillers in developing conductive and adhesive hydrogels. The nanosheets create a mussel‐inspired redox environment inside the hydrogel networks and endow the hydrogel with long‐term and repeatable adhesiveness. This hydrogel is biocompatible and can be implanted for biosignals detection in vivo. This mussel‐inspired strategy for assembling 2D nanosheets can be adapted for producing diverse multifunctional nanomaterials, with various potential applications in bioelectronics.
Inspired by redox reactions in nature, a green and cost‐effective strategy is developed for designing hydrophilic, conductive, and redox‐active sandwich‐like 2D nanosheets via the self‐assembly of poly(3,4‐ethylenedioxythiophene) (PEDOT) on a functional graphene oxide (PSGO) template. The 2D nanosheet can be used as a versatile nanofiller in the development of a conductive and adhesive hydrogel for bioelectronic applications.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.201907678</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6367-430X</orcidid><orcidid>https://orcid.org/0000-0002-6916-675X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2020-01, Vol.30 (5), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_2347552048 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | adhesive bioelectronics adhesive hydrogels Assembling Biocompatibility Catechol conductive hydrogels conductive nanosheets Conductivity Electronic properties Graphene Hydrogels Hydrophilicity Materials science Nanomaterials Nanosheets redox‐active nanosheets Surgical implants |
title | Graphene Oxide‐Templated Conductive and Redox‐Active Nanosheets Incorporated Hydrogels for Adhesive Bioelectronics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T02%3A27%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graphene%20Oxide%E2%80%90Templated%20Conductive%20and%20Redox%E2%80%90Active%20Nanosheets%20Incorporated%20Hydrogels%20for%20Adhesive%20Bioelectronics&rft.jtitle=Advanced%20functional%20materials&rft.au=Gan,%20Donglin&rft.date=2020-01-01&rft.volume=30&rft.issue=5&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201907678&rft_dat=%3Cproquest_cross%3E2347552048%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2347552048&rft_id=info:pmid/&rfr_iscdi=true |