Graphene Oxide‐Templated Conductive and Redox‐Active Nanosheets Incorporated Hydrogels for Adhesive Bioelectronics

2D conductive nanosheets are central to electronic applications because of their large surface areas and excellent electronic properties. However, tuning the multifunctions and hydrophilicity of conductive nanosheets are still challenging. Herein, a green strategy is developed for fabricating conduc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2020-01, Vol.30 (5), p.n/a
Hauptverfasser: Gan, Donglin, Huang, Ziqiang, Wang, Xiao, Jiang, Lili, Wang, Chaoming, Zhu, Mingyu, Ren, Fuzeng, Fang, Liming, Wang, Kefeng, Xie, Chaoming, Lu, Xiong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 5
container_start_page
container_title Advanced functional materials
container_volume 30
creator Gan, Donglin
Huang, Ziqiang
Wang, Xiao
Jiang, Lili
Wang, Chaoming
Zhu, Mingyu
Ren, Fuzeng
Fang, Liming
Wang, Kefeng
Xie, Chaoming
Lu, Xiong
description 2D conductive nanosheets are central to electronic applications because of their large surface areas and excellent electronic properties. However, tuning the multifunctions and hydrophilicity of conductive nanosheets are still challenging. Herein, a green strategy is developed for fabricating conductive, redox‐active, water‐soluble nanosheets via the self‐assembly of poly(3,4‐ethylenedioxythiophene) (PEDOT) on the polydopamine‐reduced and sulfonated graphene oxide (PSGO) template. The conductivity and hydrophilicity of nanosheets are highly improved by PSGO. The nanosheets are redox active due to the abundant catechol groups and can be used as versatile nanofillers in developing conductive and adhesive hydrogels. The nanosheets create a mussel‐inspired redox environment inside the hydrogel networks and endow the hydrogel with long‐term and repeatable adhesiveness. This hydrogel is biocompatible and can be implanted for biosignals detection in vivo. This mussel‐inspired strategy for assembling 2D nanosheets can be adapted for producing diverse multifunctional nanomaterials, with various potential applications in bioelectronics. Inspired by redox reactions in nature, a green and cost‐effective strategy is developed for designing hydrophilic, conductive, and redox‐active sandwich‐like 2D nanosheets via the self‐assembly of poly(3,4‐ethylenedioxythiophene) (PEDOT) on a functional graphene oxide (PSGO) template. The 2D nanosheet can be used as a versatile nanofiller in the development of a conductive and adhesive hydrogel for bioelectronic applications.
doi_str_mv 10.1002/adfm.201907678
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2347552048</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2347552048</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3838-e60f85fe26f7269ff8c49e4b1e586256f68b9b4aa1ed912bdc546858122590bf3</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRSMEElDYso7EOsV2YsdZhkIfUqESKhK7yLHHNFUaBzst7Y5P4Bv5ElKCypLVXI3OmZGu511h1McIkRuh9KpPEE5QzGJ-5J1hhlkQIsKPDxm_nHrnzi0RwnEcRmfeZmRFvYAK_Nm2UPD18TmHVV2KBpQ_MJVay6bYgC8q5T-BMtsWSLvVo6iMWwA0zp9U0tja2B9rvFPWvELpfG2sn6oFuD1-WxgoQTbWVIV0F96JFqWDy9_Z856H9_PBOJjORpNBOg1kyEMeAEOaUw2E6ZiwRGsuowSiHAPljFCmGc-TPBICg0owyZWkEeOUY0JognId9rzr7m5tzdsaXJMtzdpW7cuMhFFMKUERb6l-R0lrnLOgs9oWK2F3GUbZvtts32126LYVkk54L0rY_UNn6d3w4c_9BuuQgZg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2347552048</pqid></control><display><type>article</type><title>Graphene Oxide‐Templated Conductive and Redox‐Active Nanosheets Incorporated Hydrogels for Adhesive Bioelectronics</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Gan, Donglin ; Huang, Ziqiang ; Wang, Xiao ; Jiang, Lili ; Wang, Chaoming ; Zhu, Mingyu ; Ren, Fuzeng ; Fang, Liming ; Wang, Kefeng ; Xie, Chaoming ; Lu, Xiong</creator><creatorcontrib>Gan, Donglin ; Huang, Ziqiang ; Wang, Xiao ; Jiang, Lili ; Wang, Chaoming ; Zhu, Mingyu ; Ren, Fuzeng ; Fang, Liming ; Wang, Kefeng ; Xie, Chaoming ; Lu, Xiong</creatorcontrib><description>2D conductive nanosheets are central to electronic applications because of their large surface areas and excellent electronic properties. However, tuning the multifunctions and hydrophilicity of conductive nanosheets are still challenging. Herein, a green strategy is developed for fabricating conductive, redox‐active, water‐soluble nanosheets via the self‐assembly of poly(3,4‐ethylenedioxythiophene) (PEDOT) on the polydopamine‐reduced and sulfonated graphene oxide (PSGO) template. The conductivity and hydrophilicity of nanosheets are highly improved by PSGO. The nanosheets are redox active due to the abundant catechol groups and can be used as versatile nanofillers in developing conductive and adhesive hydrogels. The nanosheets create a mussel‐inspired redox environment inside the hydrogel networks and endow the hydrogel with long‐term and repeatable adhesiveness. This hydrogel is biocompatible and can be implanted for biosignals detection in vivo. This mussel‐inspired strategy for assembling 2D nanosheets can be adapted for producing diverse multifunctional nanomaterials, with various potential applications in bioelectronics. Inspired by redox reactions in nature, a green and cost‐effective strategy is developed for designing hydrophilic, conductive, and redox‐active sandwich‐like 2D nanosheets via the self‐assembly of poly(3,4‐ethylenedioxythiophene) (PEDOT) on a functional graphene oxide (PSGO) template. The 2D nanosheet can be used as a versatile nanofiller in the development of a conductive and adhesive hydrogel for bioelectronic applications.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201907678</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>adhesive bioelectronics ; adhesive hydrogels ; Assembling ; Biocompatibility ; Catechol ; conductive hydrogels ; conductive nanosheets ; Conductivity ; Electronic properties ; Graphene ; Hydrogels ; Hydrophilicity ; Materials science ; Nanomaterials ; Nanosheets ; redox‐active nanosheets ; Surgical implants</subject><ispartof>Advanced functional materials, 2020-01, Vol.30 (5), p.n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2020 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3838-e60f85fe26f7269ff8c49e4b1e586256f68b9b4aa1ed912bdc546858122590bf3</citedby><cites>FETCH-LOGICAL-c3838-e60f85fe26f7269ff8c49e4b1e586256f68b9b4aa1ed912bdc546858122590bf3</cites><orcidid>0000-0001-6367-430X ; 0000-0002-6916-675X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.201907678$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.201907678$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Gan, Donglin</creatorcontrib><creatorcontrib>Huang, Ziqiang</creatorcontrib><creatorcontrib>Wang, Xiao</creatorcontrib><creatorcontrib>Jiang, Lili</creatorcontrib><creatorcontrib>Wang, Chaoming</creatorcontrib><creatorcontrib>Zhu, Mingyu</creatorcontrib><creatorcontrib>Ren, Fuzeng</creatorcontrib><creatorcontrib>Fang, Liming</creatorcontrib><creatorcontrib>Wang, Kefeng</creatorcontrib><creatorcontrib>Xie, Chaoming</creatorcontrib><creatorcontrib>Lu, Xiong</creatorcontrib><title>Graphene Oxide‐Templated Conductive and Redox‐Active Nanosheets Incorporated Hydrogels for Adhesive Bioelectronics</title><title>Advanced functional materials</title><description>2D conductive nanosheets are central to electronic applications because of their large surface areas and excellent electronic properties. However, tuning the multifunctions and hydrophilicity of conductive nanosheets are still challenging. Herein, a green strategy is developed for fabricating conductive, redox‐active, water‐soluble nanosheets via the self‐assembly of poly(3,4‐ethylenedioxythiophene) (PEDOT) on the polydopamine‐reduced and sulfonated graphene oxide (PSGO) template. The conductivity and hydrophilicity of nanosheets are highly improved by PSGO. The nanosheets are redox active due to the abundant catechol groups and can be used as versatile nanofillers in developing conductive and adhesive hydrogels. The nanosheets create a mussel‐inspired redox environment inside the hydrogel networks and endow the hydrogel with long‐term and repeatable adhesiveness. This hydrogel is biocompatible and can be implanted for biosignals detection in vivo. This mussel‐inspired strategy for assembling 2D nanosheets can be adapted for producing diverse multifunctional nanomaterials, with various potential applications in bioelectronics. Inspired by redox reactions in nature, a green and cost‐effective strategy is developed for designing hydrophilic, conductive, and redox‐active sandwich‐like 2D nanosheets via the self‐assembly of poly(3,4‐ethylenedioxythiophene) (PEDOT) on a functional graphene oxide (PSGO) template. The 2D nanosheet can be used as a versatile nanofiller in the development of a conductive and adhesive hydrogel for bioelectronic applications.</description><subject>adhesive bioelectronics</subject><subject>adhesive hydrogels</subject><subject>Assembling</subject><subject>Biocompatibility</subject><subject>Catechol</subject><subject>conductive hydrogels</subject><subject>conductive nanosheets</subject><subject>Conductivity</subject><subject>Electronic properties</subject><subject>Graphene</subject><subject>Hydrogels</subject><subject>Hydrophilicity</subject><subject>Materials science</subject><subject>Nanomaterials</subject><subject>Nanosheets</subject><subject>redox‐active nanosheets</subject><subject>Surgical implants</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRSMEElDYso7EOsV2YsdZhkIfUqESKhK7yLHHNFUaBzst7Y5P4Bv5ElKCypLVXI3OmZGu511h1McIkRuh9KpPEE5QzGJ-5J1hhlkQIsKPDxm_nHrnzi0RwnEcRmfeZmRFvYAK_Nm2UPD18TmHVV2KBpQ_MJVay6bYgC8q5T-BMtsWSLvVo6iMWwA0zp9U0tja2B9rvFPWvELpfG2sn6oFuD1-WxgoQTbWVIV0F96JFqWDy9_Z856H9_PBOJjORpNBOg1kyEMeAEOaUw2E6ZiwRGsuowSiHAPljFCmGc-TPBICg0owyZWkEeOUY0JognId9rzr7m5tzdsaXJMtzdpW7cuMhFFMKUERb6l-R0lrnLOgs9oWK2F3GUbZvtts32126LYVkk54L0rY_UNn6d3w4c_9BuuQgZg</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Gan, Donglin</creator><creator>Huang, Ziqiang</creator><creator>Wang, Xiao</creator><creator>Jiang, Lili</creator><creator>Wang, Chaoming</creator><creator>Zhu, Mingyu</creator><creator>Ren, Fuzeng</creator><creator>Fang, Liming</creator><creator>Wang, Kefeng</creator><creator>Xie, Chaoming</creator><creator>Lu, Xiong</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6367-430X</orcidid><orcidid>https://orcid.org/0000-0002-6916-675X</orcidid></search><sort><creationdate>20200101</creationdate><title>Graphene Oxide‐Templated Conductive and Redox‐Active Nanosheets Incorporated Hydrogels for Adhesive Bioelectronics</title><author>Gan, Donglin ; Huang, Ziqiang ; Wang, Xiao ; Jiang, Lili ; Wang, Chaoming ; Zhu, Mingyu ; Ren, Fuzeng ; Fang, Liming ; Wang, Kefeng ; Xie, Chaoming ; Lu, Xiong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3838-e60f85fe26f7269ff8c49e4b1e586256f68b9b4aa1ed912bdc546858122590bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>adhesive bioelectronics</topic><topic>adhesive hydrogels</topic><topic>Assembling</topic><topic>Biocompatibility</topic><topic>Catechol</topic><topic>conductive hydrogels</topic><topic>conductive nanosheets</topic><topic>Conductivity</topic><topic>Electronic properties</topic><topic>Graphene</topic><topic>Hydrogels</topic><topic>Hydrophilicity</topic><topic>Materials science</topic><topic>Nanomaterials</topic><topic>Nanosheets</topic><topic>redox‐active nanosheets</topic><topic>Surgical implants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gan, Donglin</creatorcontrib><creatorcontrib>Huang, Ziqiang</creatorcontrib><creatorcontrib>Wang, Xiao</creatorcontrib><creatorcontrib>Jiang, Lili</creatorcontrib><creatorcontrib>Wang, Chaoming</creatorcontrib><creatorcontrib>Zhu, Mingyu</creatorcontrib><creatorcontrib>Ren, Fuzeng</creatorcontrib><creatorcontrib>Fang, Liming</creatorcontrib><creatorcontrib>Wang, Kefeng</creatorcontrib><creatorcontrib>Xie, Chaoming</creatorcontrib><creatorcontrib>Lu, Xiong</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gan, Donglin</au><au>Huang, Ziqiang</au><au>Wang, Xiao</au><au>Jiang, Lili</au><au>Wang, Chaoming</au><au>Zhu, Mingyu</au><au>Ren, Fuzeng</au><au>Fang, Liming</au><au>Wang, Kefeng</au><au>Xie, Chaoming</au><au>Lu, Xiong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graphene Oxide‐Templated Conductive and Redox‐Active Nanosheets Incorporated Hydrogels for Adhesive Bioelectronics</atitle><jtitle>Advanced functional materials</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>30</volume><issue>5</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>2D conductive nanosheets are central to electronic applications because of their large surface areas and excellent electronic properties. However, tuning the multifunctions and hydrophilicity of conductive nanosheets are still challenging. Herein, a green strategy is developed for fabricating conductive, redox‐active, water‐soluble nanosheets via the self‐assembly of poly(3,4‐ethylenedioxythiophene) (PEDOT) on the polydopamine‐reduced and sulfonated graphene oxide (PSGO) template. The conductivity and hydrophilicity of nanosheets are highly improved by PSGO. The nanosheets are redox active due to the abundant catechol groups and can be used as versatile nanofillers in developing conductive and adhesive hydrogels. The nanosheets create a mussel‐inspired redox environment inside the hydrogel networks and endow the hydrogel with long‐term and repeatable adhesiveness. This hydrogel is biocompatible and can be implanted for biosignals detection in vivo. This mussel‐inspired strategy for assembling 2D nanosheets can be adapted for producing diverse multifunctional nanomaterials, with various potential applications in bioelectronics. Inspired by redox reactions in nature, a green and cost‐effective strategy is developed for designing hydrophilic, conductive, and redox‐active sandwich‐like 2D nanosheets via the self‐assembly of poly(3,4‐ethylenedioxythiophene) (PEDOT) on a functional graphene oxide (PSGO) template. The 2D nanosheet can be used as a versatile nanofiller in the development of a conductive and adhesive hydrogel for bioelectronic applications.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.201907678</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6367-430X</orcidid><orcidid>https://orcid.org/0000-0002-6916-675X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2020-01, Vol.30 (5), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2347552048
source Wiley Online Library Journals Frontfile Complete
subjects adhesive bioelectronics
adhesive hydrogels
Assembling
Biocompatibility
Catechol
conductive hydrogels
conductive nanosheets
Conductivity
Electronic properties
Graphene
Hydrogels
Hydrophilicity
Materials science
Nanomaterials
Nanosheets
redox‐active nanosheets
Surgical implants
title Graphene Oxide‐Templated Conductive and Redox‐Active Nanosheets Incorporated Hydrogels for Adhesive Bioelectronics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T02%3A27%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graphene%20Oxide%E2%80%90Templated%20Conductive%20and%20Redox%E2%80%90Active%20Nanosheets%20Incorporated%20Hydrogels%20for%20Adhesive%20Bioelectronics&rft.jtitle=Advanced%20functional%20materials&rft.au=Gan,%20Donglin&rft.date=2020-01-01&rft.volume=30&rft.issue=5&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201907678&rft_dat=%3Cproquest_cross%3E2347552048%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2347552048&rft_id=info:pmid/&rfr_iscdi=true