Multi-Fingered Grasp Planning via Inference in Deep Neural Networks
We propose a novel approach to multi-fingered grasp planning leveraging learned deep neural network models. We train a voxel-based 3D convolutional neural network to predict grasp success probability as a function of both visual information of an object and grasp configuration. We can then formulate...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2020-03 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Lu, Qingkai Van der Merwe, Mark Balakumar Sundaralingam Hermans, Tucker |
description | We propose a novel approach to multi-fingered grasp planning leveraging learned deep neural network models. We train a voxel-based 3D convolutional neural network to predict grasp success probability as a function of both visual information of an object and grasp configuration. We can then formulate grasp planning as inferring the grasp configuration which maximizes the probability of grasp success. In addition, we learn a prior over grasp configurations as a mixture density network conditioned on our voxel-based object representation. We show that this object conditional prior improves grasp inference when used with the learned grasp success prediction network when compared to a learned, object-agnostic prior, or an uninformed uniform prior. Our work is the first to directly plan high quality multi-fingered grasps in configuration space using a deep neural network without the need of an external planner. We validate our inference method performing multi-finger grasping on a physical robot. Our experimental results show that our planning method outperforms existing grasp planning methods for neural networks. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2347069176</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2347069176</sourcerecordid><originalsourceid>FETCH-proquest_journals_23470691763</originalsourceid><addsrcrecordid>eNqNiksKwjAUAIMgWLR3eOC6kCb96LpadaG46L4EfZXU8FqTRq9vFh7A1cDMzFgkpEyTTSbEgsXO9ZxzUZQiz2XEqrM3k05qTQ-0eIeDVW6Eq1FEQcFbKzhRFxLdEDTBDnGEC3qrTMD0GezTrdi8U8Zh_OOSret9Ux2T0Q4vj25q-8FbCqkVMit5sU3LQv53fQGtrTma</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2347069176</pqid></control><display><type>article</type><title>Multi-Fingered Grasp Planning via Inference in Deep Neural Networks</title><source>Free E- Journals</source><creator>Lu, Qingkai ; Van der Merwe, Mark ; Balakumar Sundaralingam ; Hermans, Tucker</creator><creatorcontrib>Lu, Qingkai ; Van der Merwe, Mark ; Balakumar Sundaralingam ; Hermans, Tucker</creatorcontrib><description>We propose a novel approach to multi-fingered grasp planning leveraging learned deep neural network models. We train a voxel-based 3D convolutional neural network to predict grasp success probability as a function of both visual information of an object and grasp configuration. We can then formulate grasp planning as inferring the grasp configuration which maximizes the probability of grasp success. In addition, we learn a prior over grasp configurations as a mixture density network conditioned on our voxel-based object representation. We show that this object conditional prior improves grasp inference when used with the learned grasp success prediction network when compared to a learned, object-agnostic prior, or an uninformed uniform prior. Our work is the first to directly plan high quality multi-fingered grasps in configuration space using a deep neural network without the need of an external planner. We validate our inference method performing multi-finger grasping on a physical robot. Our experimental results show that our planning method outperforms existing grasp planning methods for neural networks.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Artificial neural networks ; Configurations ; Grasping (robotics) ; Inference ; Neural networks ; Planning ; Success ; Three dimensional models</subject><ispartof>arXiv.org, 2020-03</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Lu, Qingkai</creatorcontrib><creatorcontrib>Van der Merwe, Mark</creatorcontrib><creatorcontrib>Balakumar Sundaralingam</creatorcontrib><creatorcontrib>Hermans, Tucker</creatorcontrib><title>Multi-Fingered Grasp Planning via Inference in Deep Neural Networks</title><title>arXiv.org</title><description>We propose a novel approach to multi-fingered grasp planning leveraging learned deep neural network models. We train a voxel-based 3D convolutional neural network to predict grasp success probability as a function of both visual information of an object and grasp configuration. We can then formulate grasp planning as inferring the grasp configuration which maximizes the probability of grasp success. In addition, we learn a prior over grasp configurations as a mixture density network conditioned on our voxel-based object representation. We show that this object conditional prior improves grasp inference when used with the learned grasp success prediction network when compared to a learned, object-agnostic prior, or an uninformed uniform prior. Our work is the first to directly plan high quality multi-fingered grasps in configuration space using a deep neural network without the need of an external planner. We validate our inference method performing multi-finger grasping on a physical robot. Our experimental results show that our planning method outperforms existing grasp planning methods for neural networks.</description><subject>Artificial neural networks</subject><subject>Configurations</subject><subject>Grasping (robotics)</subject><subject>Inference</subject><subject>Neural networks</subject><subject>Planning</subject><subject>Success</subject><subject>Three dimensional models</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNiksKwjAUAIMgWLR3eOC6kCb96LpadaG46L4EfZXU8FqTRq9vFh7A1cDMzFgkpEyTTSbEgsXO9ZxzUZQiz2XEqrM3k05qTQ-0eIeDVW6Eq1FEQcFbKzhRFxLdEDTBDnGEC3qrTMD0GezTrdi8U8Zh_OOSret9Ux2T0Q4vj25q-8FbCqkVMit5sU3LQv53fQGtrTma</recordid><startdate>20200319</startdate><enddate>20200319</enddate><creator>Lu, Qingkai</creator><creator>Van der Merwe, Mark</creator><creator>Balakumar Sundaralingam</creator><creator>Hermans, Tucker</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200319</creationdate><title>Multi-Fingered Grasp Planning via Inference in Deep Neural Networks</title><author>Lu, Qingkai ; Van der Merwe, Mark ; Balakumar Sundaralingam ; Hermans, Tucker</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_23470691763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial neural networks</topic><topic>Configurations</topic><topic>Grasping (robotics)</topic><topic>Inference</topic><topic>Neural networks</topic><topic>Planning</topic><topic>Success</topic><topic>Three dimensional models</topic><toplevel>online_resources</toplevel><creatorcontrib>Lu, Qingkai</creatorcontrib><creatorcontrib>Van der Merwe, Mark</creatorcontrib><creatorcontrib>Balakumar Sundaralingam</creatorcontrib><creatorcontrib>Hermans, Tucker</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Qingkai</au><au>Van der Merwe, Mark</au><au>Balakumar Sundaralingam</au><au>Hermans, Tucker</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Multi-Fingered Grasp Planning via Inference in Deep Neural Networks</atitle><jtitle>arXiv.org</jtitle><date>2020-03-19</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>We propose a novel approach to multi-fingered grasp planning leveraging learned deep neural network models. We train a voxel-based 3D convolutional neural network to predict grasp success probability as a function of both visual information of an object and grasp configuration. We can then formulate grasp planning as inferring the grasp configuration which maximizes the probability of grasp success. In addition, we learn a prior over grasp configurations as a mixture density network conditioned on our voxel-based object representation. We show that this object conditional prior improves grasp inference when used with the learned grasp success prediction network when compared to a learned, object-agnostic prior, or an uninformed uniform prior. Our work is the first to directly plan high quality multi-fingered grasps in configuration space using a deep neural network without the need of an external planner. We validate our inference method performing multi-finger grasping on a physical robot. Our experimental results show that our planning method outperforms existing grasp planning methods for neural networks.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2020-03 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2347069176 |
source | Free E- Journals |
subjects | Artificial neural networks Configurations Grasping (robotics) Inference Neural networks Planning Success Three dimensional models |
title | Multi-Fingered Grasp Planning via Inference in Deep Neural Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T05%3A17%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Multi-Fingered%20Grasp%20Planning%20via%20Inference%20in%20Deep%20Neural%20Networks&rft.jtitle=arXiv.org&rft.au=Lu,%20Qingkai&rft.date=2020-03-19&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2347069176%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2347069176&rft_id=info:pmid/&rfr_iscdi=true |