Multi-Fingered Grasp Planning via Inference in Deep Neural Networks

We propose a novel approach to multi-fingered grasp planning leveraging learned deep neural network models. We train a voxel-based 3D convolutional neural network to predict grasp success probability as a function of both visual information of an object and grasp configuration. We can then formulate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2020-03
Hauptverfasser: Lu, Qingkai, Van der Merwe, Mark, Balakumar Sundaralingam, Hermans, Tucker
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Lu, Qingkai
Van der Merwe, Mark
Balakumar Sundaralingam
Hermans, Tucker
description We propose a novel approach to multi-fingered grasp planning leveraging learned deep neural network models. We train a voxel-based 3D convolutional neural network to predict grasp success probability as a function of both visual information of an object and grasp configuration. We can then formulate grasp planning as inferring the grasp configuration which maximizes the probability of grasp success. In addition, we learn a prior over grasp configurations as a mixture density network conditioned on our voxel-based object representation. We show that this object conditional prior improves grasp inference when used with the learned grasp success prediction network when compared to a learned, object-agnostic prior, or an uninformed uniform prior. Our work is the first to directly plan high quality multi-fingered grasps in configuration space using a deep neural network without the need of an external planner. We validate our inference method performing multi-finger grasping on a physical robot. Our experimental results show that our planning method outperforms existing grasp planning methods for neural networks.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2347069176</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2347069176</sourcerecordid><originalsourceid>FETCH-proquest_journals_23470691763</originalsourceid><addsrcrecordid>eNqNiksKwjAUAIMgWLR3eOC6kCb96LpadaG46L4EfZXU8FqTRq9vFh7A1cDMzFgkpEyTTSbEgsXO9ZxzUZQiz2XEqrM3k05qTQ-0eIeDVW6Eq1FEQcFbKzhRFxLdEDTBDnGEC3qrTMD0GezTrdi8U8Zh_OOSret9Ux2T0Q4vj25q-8FbCqkVMit5sU3LQv53fQGtrTma</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2347069176</pqid></control><display><type>article</type><title>Multi-Fingered Grasp Planning via Inference in Deep Neural Networks</title><source>Free E- Journals</source><creator>Lu, Qingkai ; Van der Merwe, Mark ; Balakumar Sundaralingam ; Hermans, Tucker</creator><creatorcontrib>Lu, Qingkai ; Van der Merwe, Mark ; Balakumar Sundaralingam ; Hermans, Tucker</creatorcontrib><description>We propose a novel approach to multi-fingered grasp planning leveraging learned deep neural network models. We train a voxel-based 3D convolutional neural network to predict grasp success probability as a function of both visual information of an object and grasp configuration. We can then formulate grasp planning as inferring the grasp configuration which maximizes the probability of grasp success. In addition, we learn a prior over grasp configurations as a mixture density network conditioned on our voxel-based object representation. We show that this object conditional prior improves grasp inference when used with the learned grasp success prediction network when compared to a learned, object-agnostic prior, or an uninformed uniform prior. Our work is the first to directly plan high quality multi-fingered grasps in configuration space using a deep neural network without the need of an external planner. We validate our inference method performing multi-finger grasping on a physical robot. Our experimental results show that our planning method outperforms existing grasp planning methods for neural networks.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Artificial neural networks ; Configurations ; Grasping (robotics) ; Inference ; Neural networks ; Planning ; Success ; Three dimensional models</subject><ispartof>arXiv.org, 2020-03</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Lu, Qingkai</creatorcontrib><creatorcontrib>Van der Merwe, Mark</creatorcontrib><creatorcontrib>Balakumar Sundaralingam</creatorcontrib><creatorcontrib>Hermans, Tucker</creatorcontrib><title>Multi-Fingered Grasp Planning via Inference in Deep Neural Networks</title><title>arXiv.org</title><description>We propose a novel approach to multi-fingered grasp planning leveraging learned deep neural network models. We train a voxel-based 3D convolutional neural network to predict grasp success probability as a function of both visual information of an object and grasp configuration. We can then formulate grasp planning as inferring the grasp configuration which maximizes the probability of grasp success. In addition, we learn a prior over grasp configurations as a mixture density network conditioned on our voxel-based object representation. We show that this object conditional prior improves grasp inference when used with the learned grasp success prediction network when compared to a learned, object-agnostic prior, or an uninformed uniform prior. Our work is the first to directly plan high quality multi-fingered grasps in configuration space using a deep neural network without the need of an external planner. We validate our inference method performing multi-finger grasping on a physical robot. Our experimental results show that our planning method outperforms existing grasp planning methods for neural networks.</description><subject>Artificial neural networks</subject><subject>Configurations</subject><subject>Grasping (robotics)</subject><subject>Inference</subject><subject>Neural networks</subject><subject>Planning</subject><subject>Success</subject><subject>Three dimensional models</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNiksKwjAUAIMgWLR3eOC6kCb96LpadaG46L4EfZXU8FqTRq9vFh7A1cDMzFgkpEyTTSbEgsXO9ZxzUZQiz2XEqrM3k05qTQ-0eIeDVW6Eq1FEQcFbKzhRFxLdEDTBDnGEC3qrTMD0GezTrdi8U8Zh_OOSret9Ux2T0Q4vj25q-8FbCqkVMit5sU3LQv53fQGtrTma</recordid><startdate>20200319</startdate><enddate>20200319</enddate><creator>Lu, Qingkai</creator><creator>Van der Merwe, Mark</creator><creator>Balakumar Sundaralingam</creator><creator>Hermans, Tucker</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200319</creationdate><title>Multi-Fingered Grasp Planning via Inference in Deep Neural Networks</title><author>Lu, Qingkai ; Van der Merwe, Mark ; Balakumar Sundaralingam ; Hermans, Tucker</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_23470691763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial neural networks</topic><topic>Configurations</topic><topic>Grasping (robotics)</topic><topic>Inference</topic><topic>Neural networks</topic><topic>Planning</topic><topic>Success</topic><topic>Three dimensional models</topic><toplevel>online_resources</toplevel><creatorcontrib>Lu, Qingkai</creatorcontrib><creatorcontrib>Van der Merwe, Mark</creatorcontrib><creatorcontrib>Balakumar Sundaralingam</creatorcontrib><creatorcontrib>Hermans, Tucker</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Qingkai</au><au>Van der Merwe, Mark</au><au>Balakumar Sundaralingam</au><au>Hermans, Tucker</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Multi-Fingered Grasp Planning via Inference in Deep Neural Networks</atitle><jtitle>arXiv.org</jtitle><date>2020-03-19</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>We propose a novel approach to multi-fingered grasp planning leveraging learned deep neural network models. We train a voxel-based 3D convolutional neural network to predict grasp success probability as a function of both visual information of an object and grasp configuration. We can then formulate grasp planning as inferring the grasp configuration which maximizes the probability of grasp success. In addition, we learn a prior over grasp configurations as a mixture density network conditioned on our voxel-based object representation. We show that this object conditional prior improves grasp inference when used with the learned grasp success prediction network when compared to a learned, object-agnostic prior, or an uninformed uniform prior. Our work is the first to directly plan high quality multi-fingered grasps in configuration space using a deep neural network without the need of an external planner. We validate our inference method performing multi-finger grasping on a physical robot. Our experimental results show that our planning method outperforms existing grasp planning methods for neural networks.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2020-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_2347069176
source Free E- Journals
subjects Artificial neural networks
Configurations
Grasping (robotics)
Inference
Neural networks
Planning
Success
Three dimensional models
title Multi-Fingered Grasp Planning via Inference in Deep Neural Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T05%3A17%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Multi-Fingered%20Grasp%20Planning%20via%20Inference%20in%20Deep%20Neural%20Networks&rft.jtitle=arXiv.org&rft.au=Lu,%20Qingkai&rft.date=2020-03-19&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2347069176%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2347069176&rft_id=info:pmid/&rfr_iscdi=true