Evapotranspiration Characteristics Distinct to Mangrove Ecosystems Are Revealed by Multiple‐Site Observations and a Modified Two‐Source Model
A quantitative accounting of how mangrove ecosystems respond to tidal perturbations is needed to anticipate changes in these ecosystems when sea level rises. Here we use long‐term field observations and a two‐source ecohydrological model to reveal specialized characteristics of evapotranspiration (E...
Gespeichert in:
Veröffentlicht in: | Water resources research 2019-12, Vol.55 (12), p.11250-11273 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11273 |
---|---|
container_issue | 12 |
container_start_page | 11250 |
container_title | Water resources research |
container_volume | 55 |
creator | Liang, Jie Wei, Zhongwang Lee, Xuhui Wright, Jonathon S. Cui, Xiaowei Chen, Hui Lin, Guanghui |
description | A quantitative accounting of how mangrove ecosystems respond to tidal perturbations is needed to anticipate changes in these ecosystems when sea level rises. Here we use long‐term field observations and a two‐source ecohydrological model to reveal specialized characteristics of evapotranspiration (ET), soil surface evaporation (E), and canopy transpiration (T) in three subtropical mangrove ecosystems in southeastern China. Average wintertime ET observed in these three mangrove forests (2.6 mm day–1) was consistent with values for semiarid ecosystems, while average summertime ET (6.2 mm day–1) approached that observed in rainforests. By contrast, T fluxes were small year‐round, averaging 1.3 mm day–1 in winter and 2.5 mm day–1 in summer. Combining our results with measurements from three Florida mangroves, observed values of T ranged from 350 to 870 mm year−1, varying primarily with salinity, while T/ET increased exponentially from 30% to 70% with rising leaf area index. Simulations of half‐hourly ET and T using a modified two‐source model were highly correlated with eddy covariance observations of ET (I, index of agreement >0.93 at all three sites) and sap flow gauge‐based estimates of T (I = 0.93 at the Yunxiao site). Variations of T in mangrove ecosystems are distinguished from those in terrestrial forests mainly by the sensitivity of stomatal conductance to leaf temperature, with tidal and salinity effects superimposed. Our modified model accounts for these effects and therefore holds promise for improving our understanding of how mangrove ecosystems may respond to changing stress conditions under global warming and sea level rise.
Key Points
Extension of the two‐source model permits reliable half‐hourly simulations of transpiration fluxes in three tidal mangrove ecosystems
Suppression of transpiration under high temperatures is stronger in mangroves than in well‐watered ecosystems
The narrow temperature tolerance range and evident tidal effects imply potential further effects of climate change on mangrove transpiration |
doi_str_mv | 10.1029/2019WR024729 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2346598275</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2346598275</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3961-99748dd777e2eb3922f6d381a5a66614362818115edbaf326ede01a24479f6e83</originalsourceid><addsrcrecordid>eNp90MtKAzEUBuAgCtbqzgcIuHU0t0kmS6n1Ai2FWulySGfOaGScjEna0p2PoK_okzi1Lly5OnD4-M_hR-iUkgtKmL5khOr5lDChmN5DPaqFSJRWfB_1CBE8oVyrQ3QUwgshVKRS9dDncGVaF71pQmu9idY1ePBsvCkieBuiLQK-3s6miDg6PDbNk3crwMPChU2I8BrwlQc8hRWYGkq82ODxso62reHr_ePBRsCTRQC_-skO2DQlNnjsSlvZjs_Wbsvc0hew3UJ9jA4qUwc4-Z199HgznA3uktHk9n5wNUoM15ImWiuRlaVSChgsuGaskiXPqEmNlJIKLllGM0pTKBem4kxCCYQaJoTSlYSM99HZLrf17m0JIeYv3RdNdzJnXMhUZ0ylnTrfqcK7EDxUeevtq_GbnJJ8W3r-t_SO8x1f2xo2_9p8Ph1MmeCM8m-LsYca</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2346598275</pqid></control><display><type>article</type><title>Evapotranspiration Characteristics Distinct to Mangrove Ecosystems Are Revealed by Multiple‐Site Observations and a Modified Two‐Source Model</title><source>Wiley Online Library</source><source>Wiley-Blackwell AGU Digital Archive</source><source>EZB Electronic Journals Library</source><creator>Liang, Jie ; Wei, Zhongwang ; Lee, Xuhui ; Wright, Jonathon S. ; Cui, Xiaowei ; Chen, Hui ; Lin, Guanghui</creator><creatorcontrib>Liang, Jie ; Wei, Zhongwang ; Lee, Xuhui ; Wright, Jonathon S. ; Cui, Xiaowei ; Chen, Hui ; Lin, Guanghui</creatorcontrib><description>A quantitative accounting of how mangrove ecosystems respond to tidal perturbations is needed to anticipate changes in these ecosystems when sea level rises. Here we use long‐term field observations and a two‐source ecohydrological model to reveal specialized characteristics of evapotranspiration (ET), soil surface evaporation (E), and canopy transpiration (T) in three subtropical mangrove ecosystems in southeastern China. Average wintertime ET observed in these three mangrove forests (2.6 mm day–1) was consistent with values for semiarid ecosystems, while average summertime ET (6.2 mm day–1) approached that observed in rainforests. By contrast, T fluxes were small year‐round, averaging 1.3 mm day–1 in winter and 2.5 mm day–1 in summer. Combining our results with measurements from three Florida mangroves, observed values of T ranged from 350 to 870 mm year−1, varying primarily with salinity, while T/ET increased exponentially from 30% to 70% with rising leaf area index. Simulations of half‐hourly ET and T using a modified two‐source model were highly correlated with eddy covariance observations of ET (I, index of agreement >0.93 at all three sites) and sap flow gauge‐based estimates of T (I = 0.93 at the Yunxiao site). Variations of T in mangrove ecosystems are distinguished from those in terrestrial forests mainly by the sensitivity of stomatal conductance to leaf temperature, with tidal and salinity effects superimposed. Our modified model accounts for these effects and therefore holds promise for improving our understanding of how mangrove ecosystems may respond to changing stress conditions under global warming and sea level rise.
Key Points
Extension of the two‐source model permits reliable half‐hourly simulations of transpiration fluxes in three tidal mangrove ecosystems
Suppression of transpiration under high temperatures is stronger in mangroves than in well‐watered ecosystems
The narrow temperature tolerance range and evident tidal effects imply potential further effects of climate change on mangrove transpiration</description><identifier>ISSN: 0043-1397</identifier><identifier>EISSN: 1944-7973</identifier><identifier>DOI: 10.1029/2019WR024729</identifier><language>eng</language><publisher>Washington: John Wiley & Sons, Inc</publisher><subject>Climate change ; Computer simulation ; Conductance ; Covariance ; Ecohydrology ; Ecosystems ; Eddy covariance ; Evaporation ; Evapotranspiration ; Fluxes ; Global warming ; Leaf area ; Leaf area index ; Leaf temperature ; Leaves ; Mangrove forests ; Mangrove swamps ; Mangroves ; Plant cover ; Rainforests ; Resistance ; Salinity ; Salinity effects ; Sea level ; Sea level rise ; Soil ; Soil surfaces ; Stomata ; Stomatal conductance ; Temperature effects ; Tidal perturbation ; Tides ; Transpiration ; Winter</subject><ispartof>Water resources research, 2019-12, Vol.55 (12), p.11250-11273</ispartof><rights>2019. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3961-99748dd777e2eb3922f6d381a5a66614362818115edbaf326ede01a24479f6e83</citedby><cites>FETCH-LOGICAL-a3961-99748dd777e2eb3922f6d381a5a66614362818115edbaf326ede01a24479f6e83</cites><orcidid>0000-0001-6551-7017 ; 0000-0002-9616-950X ; 0000-0002-0440-506X ; 0000-0002-6287-8527 ; 0000-0001-7619-3425 ; 0000-0003-1350-4446</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2019WR024729$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2019WR024729$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,11493,27901,27902,45550,45551,46443,46867</link.rule.ids></links><search><creatorcontrib>Liang, Jie</creatorcontrib><creatorcontrib>Wei, Zhongwang</creatorcontrib><creatorcontrib>Lee, Xuhui</creatorcontrib><creatorcontrib>Wright, Jonathon S.</creatorcontrib><creatorcontrib>Cui, Xiaowei</creatorcontrib><creatorcontrib>Chen, Hui</creatorcontrib><creatorcontrib>Lin, Guanghui</creatorcontrib><title>Evapotranspiration Characteristics Distinct to Mangrove Ecosystems Are Revealed by Multiple‐Site Observations and a Modified Two‐Source Model</title><title>Water resources research</title><description>A quantitative accounting of how mangrove ecosystems respond to tidal perturbations is needed to anticipate changes in these ecosystems when sea level rises. Here we use long‐term field observations and a two‐source ecohydrological model to reveal specialized characteristics of evapotranspiration (ET), soil surface evaporation (E), and canopy transpiration (T) in three subtropical mangrove ecosystems in southeastern China. Average wintertime ET observed in these three mangrove forests (2.6 mm day–1) was consistent with values for semiarid ecosystems, while average summertime ET (6.2 mm day–1) approached that observed in rainforests. By contrast, T fluxes were small year‐round, averaging 1.3 mm day–1 in winter and 2.5 mm day–1 in summer. Combining our results with measurements from three Florida mangroves, observed values of T ranged from 350 to 870 mm year−1, varying primarily with salinity, while T/ET increased exponentially from 30% to 70% with rising leaf area index. Simulations of half‐hourly ET and T using a modified two‐source model were highly correlated with eddy covariance observations of ET (I, index of agreement >0.93 at all three sites) and sap flow gauge‐based estimates of T (I = 0.93 at the Yunxiao site). Variations of T in mangrove ecosystems are distinguished from those in terrestrial forests mainly by the sensitivity of stomatal conductance to leaf temperature, with tidal and salinity effects superimposed. Our modified model accounts for these effects and therefore holds promise for improving our understanding of how mangrove ecosystems may respond to changing stress conditions under global warming and sea level rise.
Key Points
Extension of the two‐source model permits reliable half‐hourly simulations of transpiration fluxes in three tidal mangrove ecosystems
Suppression of transpiration under high temperatures is stronger in mangroves than in well‐watered ecosystems
The narrow temperature tolerance range and evident tidal effects imply potential further effects of climate change on mangrove transpiration</description><subject>Climate change</subject><subject>Computer simulation</subject><subject>Conductance</subject><subject>Covariance</subject><subject>Ecohydrology</subject><subject>Ecosystems</subject><subject>Eddy covariance</subject><subject>Evaporation</subject><subject>Evapotranspiration</subject><subject>Fluxes</subject><subject>Global warming</subject><subject>Leaf area</subject><subject>Leaf area index</subject><subject>Leaf temperature</subject><subject>Leaves</subject><subject>Mangrove forests</subject><subject>Mangrove swamps</subject><subject>Mangroves</subject><subject>Plant cover</subject><subject>Rainforests</subject><subject>Resistance</subject><subject>Salinity</subject><subject>Salinity effects</subject><subject>Sea level</subject><subject>Sea level rise</subject><subject>Soil</subject><subject>Soil surfaces</subject><subject>Stomata</subject><subject>Stomatal conductance</subject><subject>Temperature effects</subject><subject>Tidal perturbation</subject><subject>Tides</subject><subject>Transpiration</subject><subject>Winter</subject><issn>0043-1397</issn><issn>1944-7973</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp90MtKAzEUBuAgCtbqzgcIuHU0t0kmS6n1Ai2FWulySGfOaGScjEna0p2PoK_okzi1Lly5OnD4-M_hR-iUkgtKmL5khOr5lDChmN5DPaqFSJRWfB_1CBE8oVyrQ3QUwgshVKRS9dDncGVaF71pQmu9idY1ePBsvCkieBuiLQK-3s6miDg6PDbNk3crwMPChU2I8BrwlQc8hRWYGkq82ODxso62reHr_ePBRsCTRQC_-skO2DQlNnjsSlvZjs_Wbsvc0hew3UJ9jA4qUwc4-Z199HgznA3uktHk9n5wNUoM15ImWiuRlaVSChgsuGaskiXPqEmNlJIKLllGM0pTKBem4kxCCYQaJoTSlYSM99HZLrf17m0JIeYv3RdNdzJnXMhUZ0ylnTrfqcK7EDxUeevtq_GbnJJ8W3r-t_SO8x1f2xo2_9p8Ph1MmeCM8m-LsYca</recordid><startdate>201912</startdate><enddate>201912</enddate><creator>Liang, Jie</creator><creator>Wei, Zhongwang</creator><creator>Lee, Xuhui</creator><creator>Wright, Jonathon S.</creator><creator>Cui, Xiaowei</creator><creator>Chen, Hui</creator><creator>Lin, Guanghui</creator><general>John Wiley & Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7QL</scope><scope>7T7</scope><scope>7TG</scope><scope>7U9</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H94</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0001-6551-7017</orcidid><orcidid>https://orcid.org/0000-0002-9616-950X</orcidid><orcidid>https://orcid.org/0000-0002-0440-506X</orcidid><orcidid>https://orcid.org/0000-0002-6287-8527</orcidid><orcidid>https://orcid.org/0000-0001-7619-3425</orcidid><orcidid>https://orcid.org/0000-0003-1350-4446</orcidid></search><sort><creationdate>201912</creationdate><title>Evapotranspiration Characteristics Distinct to Mangrove Ecosystems Are Revealed by Multiple‐Site Observations and a Modified Two‐Source Model</title><author>Liang, Jie ; Wei, Zhongwang ; Lee, Xuhui ; Wright, Jonathon S. ; Cui, Xiaowei ; Chen, Hui ; Lin, Guanghui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3961-99748dd777e2eb3922f6d381a5a66614362818115edbaf326ede01a24479f6e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Climate change</topic><topic>Computer simulation</topic><topic>Conductance</topic><topic>Covariance</topic><topic>Ecohydrology</topic><topic>Ecosystems</topic><topic>Eddy covariance</topic><topic>Evaporation</topic><topic>Evapotranspiration</topic><topic>Fluxes</topic><topic>Global warming</topic><topic>Leaf area</topic><topic>Leaf area index</topic><topic>Leaf temperature</topic><topic>Leaves</topic><topic>Mangrove forests</topic><topic>Mangrove swamps</topic><topic>Mangroves</topic><topic>Plant cover</topic><topic>Rainforests</topic><topic>Resistance</topic><topic>Salinity</topic><topic>Salinity effects</topic><topic>Sea level</topic><topic>Sea level rise</topic><topic>Soil</topic><topic>Soil surfaces</topic><topic>Stomata</topic><topic>Stomatal conductance</topic><topic>Temperature effects</topic><topic>Tidal perturbation</topic><topic>Tides</topic><topic>Transpiration</topic><topic>Winter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Jie</creatorcontrib><creatorcontrib>Wei, Zhongwang</creatorcontrib><creatorcontrib>Lee, Xuhui</creatorcontrib><creatorcontrib>Wright, Jonathon S.</creatorcontrib><creatorcontrib>Cui, Xiaowei</creatorcontrib><creatorcontrib>Chen, Hui</creatorcontrib><creatorcontrib>Lin, Guanghui</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Water resources research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, Jie</au><au>Wei, Zhongwang</au><au>Lee, Xuhui</au><au>Wright, Jonathon S.</au><au>Cui, Xiaowei</au><au>Chen, Hui</au><au>Lin, Guanghui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evapotranspiration Characteristics Distinct to Mangrove Ecosystems Are Revealed by Multiple‐Site Observations and a Modified Two‐Source Model</atitle><jtitle>Water resources research</jtitle><date>2019-12</date><risdate>2019</risdate><volume>55</volume><issue>12</issue><spage>11250</spage><epage>11273</epage><pages>11250-11273</pages><issn>0043-1397</issn><eissn>1944-7973</eissn><abstract>A quantitative accounting of how mangrove ecosystems respond to tidal perturbations is needed to anticipate changes in these ecosystems when sea level rises. Here we use long‐term field observations and a two‐source ecohydrological model to reveal specialized characteristics of evapotranspiration (ET), soil surface evaporation (E), and canopy transpiration (T) in three subtropical mangrove ecosystems in southeastern China. Average wintertime ET observed in these three mangrove forests (2.6 mm day–1) was consistent with values for semiarid ecosystems, while average summertime ET (6.2 mm day–1) approached that observed in rainforests. By contrast, T fluxes were small year‐round, averaging 1.3 mm day–1 in winter and 2.5 mm day–1 in summer. Combining our results with measurements from three Florida mangroves, observed values of T ranged from 350 to 870 mm year−1, varying primarily with salinity, while T/ET increased exponentially from 30% to 70% with rising leaf area index. Simulations of half‐hourly ET and T using a modified two‐source model were highly correlated with eddy covariance observations of ET (I, index of agreement >0.93 at all three sites) and sap flow gauge‐based estimates of T (I = 0.93 at the Yunxiao site). Variations of T in mangrove ecosystems are distinguished from those in terrestrial forests mainly by the sensitivity of stomatal conductance to leaf temperature, with tidal and salinity effects superimposed. Our modified model accounts for these effects and therefore holds promise for improving our understanding of how mangrove ecosystems may respond to changing stress conditions under global warming and sea level rise.
Key Points
Extension of the two‐source model permits reliable half‐hourly simulations of transpiration fluxes in three tidal mangrove ecosystems
Suppression of transpiration under high temperatures is stronger in mangroves than in well‐watered ecosystems
The narrow temperature tolerance range and evident tidal effects imply potential further effects of climate change on mangrove transpiration</abstract><cop>Washington</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1029/2019WR024729</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0001-6551-7017</orcidid><orcidid>https://orcid.org/0000-0002-9616-950X</orcidid><orcidid>https://orcid.org/0000-0002-0440-506X</orcidid><orcidid>https://orcid.org/0000-0002-6287-8527</orcidid><orcidid>https://orcid.org/0000-0001-7619-3425</orcidid><orcidid>https://orcid.org/0000-0003-1350-4446</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0043-1397 |
ispartof | Water resources research, 2019-12, Vol.55 (12), p.11250-11273 |
issn | 0043-1397 1944-7973 |
language | eng |
recordid | cdi_proquest_journals_2346598275 |
source | Wiley Online Library; Wiley-Blackwell AGU Digital Archive; EZB Electronic Journals Library |
subjects | Climate change Computer simulation Conductance Covariance Ecohydrology Ecosystems Eddy covariance Evaporation Evapotranspiration Fluxes Global warming Leaf area Leaf area index Leaf temperature Leaves Mangrove forests Mangrove swamps Mangroves Plant cover Rainforests Resistance Salinity Salinity effects Sea level Sea level rise Soil Soil surfaces Stomata Stomatal conductance Temperature effects Tidal perturbation Tides Transpiration Winter |
title | Evapotranspiration Characteristics Distinct to Mangrove Ecosystems Are Revealed by Multiple‐Site Observations and a Modified Two‐Source Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T20%3A23%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evapotranspiration%20Characteristics%20Distinct%20to%20Mangrove%20Ecosystems%20Are%20Revealed%20by%20Multiple%E2%80%90Site%20Observations%20and%20a%20Modified%20Two%E2%80%90Source%20Model&rft.jtitle=Water%20resources%20research&rft.au=Liang,%20Jie&rft.date=2019-12&rft.volume=55&rft.issue=12&rft.spage=11250&rft.epage=11273&rft.pages=11250-11273&rft.issn=0043-1397&rft.eissn=1944-7973&rft_id=info:doi/10.1029/2019WR024729&rft_dat=%3Cproquest_cross%3E2346598275%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2346598275&rft_id=info:pmid/&rfr_iscdi=true |