Intravascular optical coherence tomography image segmentation based on Gaussian mixture model and adaptive fourth-order PDE

The accuracy of the fibrotic plaque segmentation is vital in identifying the coronary artery stenosis. In this paper, we address an automated approach (APDE-GMM) for separating the fibrotic plaque area of intravascular optical coherence tomography (IV-OCT) images. Under this approach, an objective f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Signal, image and video processing image and video processing, 2020-02, Vol.14 (1), p.29-37
Hauptverfasser: Wang, Pengyu, Zhu, Hongqing, Ling, Xiaofeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 37
container_issue 1
container_start_page 29
container_title Signal, image and video processing
container_volume 14
creator Wang, Pengyu
Zhu, Hongqing
Ling, Xiaofeng
description The accuracy of the fibrotic plaque segmentation is vital in identifying the coronary artery stenosis. In this paper, we address an automated approach (APDE-GMM) for separating the fibrotic plaque area of intravascular optical coherence tomography (IV-OCT) images. Under this approach, an objective function consisting of a new energy functional with Rayleigh distribution and the negative log-likelihood function of Gaussian mixture model (GMM) is developed. Also, the study presents an adaptive diffusivity function where the gradient threshold can be associated to suppress the effect of speckle noise. The parameter estimation is carried out by the expectation–maximization technology. In addition, this paper derives a fourth-order partial differential equation (PDE) via Euler–Lagrange equation to obtain the optimal solutions. It has been compared to other segmentation approaches on synthetic and clinical IV-OCT images. The results demonstrate that APDE-GMM segmentates more accurately.
doi_str_mv 10.1007/s11760-019-01520-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2346493893</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2346493893</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-76fcb4591dcab08a547e06ac90adeff4b1f56bde4c89d12210373d42809b1d6e3</originalsourceid><addsrcrecordid>eNp9UMFOwzAMrRBITGM_wCkS50LStGl7RGMMpElwgHPkJm7XqW1Gkk5M_DyBIrhhyfI7vPdsvyi6ZPSaUZrfOMZyQWPKytBZQmNxEs1YIXjMcsZOfzHl59HCuR0NxZO8EMUs-ngcvIUDODV2YInZ-1ZBR5TZosVBIfGmN42F_fZI2h4aJA6bHgcPvjUDqcChJgGsYXSuhYH07bsfLZLeaOwIDJqAhuB6QFKb0fptbKxGS57vVhfRWQ2dw8XPnEev96uX5UO8eVo_Lm83seKs9HEualWlWcm0gooWkKU5UgGqpKCxrtOK1ZmoNKaqKDVLEkZ5znWaFLSsmBbI59HV5Lu35m1E5-UuXDKElTLhqUhLXpQ8sJKJpaxxzmIt9zZ8bI-SUfmVs5xyliFn-Z2zFEHEJ5EL5KFB-2f9j-oTmRGCtg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2346493893</pqid></control><display><type>article</type><title>Intravascular optical coherence tomography image segmentation based on Gaussian mixture model and adaptive fourth-order PDE</title><source>SpringerNature Journals</source><creator>Wang, Pengyu ; Zhu, Hongqing ; Ling, Xiaofeng</creator><creatorcontrib>Wang, Pengyu ; Zhu, Hongqing ; Ling, Xiaofeng</creatorcontrib><description>The accuracy of the fibrotic plaque segmentation is vital in identifying the coronary artery stenosis. In this paper, we address an automated approach (APDE-GMM) for separating the fibrotic plaque area of intravascular optical coherence tomography (IV-OCT) images. Under this approach, an objective function consisting of a new energy functional with Rayleigh distribution and the negative log-likelihood function of Gaussian mixture model (GMM) is developed. Also, the study presents an adaptive diffusivity function where the gradient threshold can be associated to suppress the effect of speckle noise. The parameter estimation is carried out by the expectation–maximization technology. In addition, this paper derives a fourth-order partial differential equation (PDE) via Euler–Lagrange equation to obtain the optimal solutions. It has been compared to other segmentation approaches on synthetic and clinical IV-OCT images. The results demonstrate that APDE-GMM segmentates more accurately.</description><identifier>ISSN: 1863-1703</identifier><identifier>EISSN: 1863-1711</identifier><identifier>DOI: 10.1007/s11760-019-01520-6</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Computer Imaging ; Computer Science ; Energy distribution ; Euler-Lagrange equation ; Fibrosis ; Image Processing and Computer Vision ; Image segmentation ; Model accuracy ; Multimedia Information Systems ; Optical Coherence Tomography ; Optimization ; Original Paper ; Parameter estimation ; Partial differential equations ; Pattern Recognition and Graphics ; Probabilistic models ; Rayleigh distribution ; Signal,Image and Speech Processing ; Tomography ; Vision</subject><ispartof>Signal, image and video processing, 2020-02, Vol.14 (1), p.29-37</ispartof><rights>Springer-Verlag London Ltd., part of Springer Nature 2019</rights><rights>2019© Springer-Verlag London Ltd., part of Springer Nature 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-76fcb4591dcab08a547e06ac90adeff4b1f56bde4c89d12210373d42809b1d6e3</citedby><cites>FETCH-LOGICAL-c319t-76fcb4591dcab08a547e06ac90adeff4b1f56bde4c89d12210373d42809b1d6e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11760-019-01520-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11760-019-01520-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Wang, Pengyu</creatorcontrib><creatorcontrib>Zhu, Hongqing</creatorcontrib><creatorcontrib>Ling, Xiaofeng</creatorcontrib><title>Intravascular optical coherence tomography image segmentation based on Gaussian mixture model and adaptive fourth-order PDE</title><title>Signal, image and video processing</title><addtitle>SIViP</addtitle><description>The accuracy of the fibrotic plaque segmentation is vital in identifying the coronary artery stenosis. In this paper, we address an automated approach (APDE-GMM) for separating the fibrotic plaque area of intravascular optical coherence tomography (IV-OCT) images. Under this approach, an objective function consisting of a new energy functional with Rayleigh distribution and the negative log-likelihood function of Gaussian mixture model (GMM) is developed. Also, the study presents an adaptive diffusivity function where the gradient threshold can be associated to suppress the effect of speckle noise. The parameter estimation is carried out by the expectation–maximization technology. In addition, this paper derives a fourth-order partial differential equation (PDE) via Euler–Lagrange equation to obtain the optimal solutions. It has been compared to other segmentation approaches on synthetic and clinical IV-OCT images. The results demonstrate that APDE-GMM segmentates more accurately.</description><subject>Computer Imaging</subject><subject>Computer Science</subject><subject>Energy distribution</subject><subject>Euler-Lagrange equation</subject><subject>Fibrosis</subject><subject>Image Processing and Computer Vision</subject><subject>Image segmentation</subject><subject>Model accuracy</subject><subject>Multimedia Information Systems</subject><subject>Optical Coherence Tomography</subject><subject>Optimization</subject><subject>Original Paper</subject><subject>Parameter estimation</subject><subject>Partial differential equations</subject><subject>Pattern Recognition and Graphics</subject><subject>Probabilistic models</subject><subject>Rayleigh distribution</subject><subject>Signal,Image and Speech Processing</subject><subject>Tomography</subject><subject>Vision</subject><issn>1863-1703</issn><issn>1863-1711</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9UMFOwzAMrRBITGM_wCkS50LStGl7RGMMpElwgHPkJm7XqW1Gkk5M_DyBIrhhyfI7vPdsvyi6ZPSaUZrfOMZyQWPKytBZQmNxEs1YIXjMcsZOfzHl59HCuR0NxZO8EMUs-ngcvIUDODV2YInZ-1ZBR5TZosVBIfGmN42F_fZI2h4aJA6bHgcPvjUDqcChJgGsYXSuhYH07bsfLZLeaOwIDJqAhuB6QFKb0fptbKxGS57vVhfRWQ2dw8XPnEev96uX5UO8eVo_Lm83seKs9HEualWlWcm0gooWkKU5UgGqpKCxrtOK1ZmoNKaqKDVLEkZ5znWaFLSsmBbI59HV5Lu35m1E5-UuXDKElTLhqUhLXpQ8sJKJpaxxzmIt9zZ8bI-SUfmVs5xyliFn-Z2zFEHEJ5EL5KFB-2f9j-oTmRGCtg</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Wang, Pengyu</creator><creator>Zhu, Hongqing</creator><creator>Ling, Xiaofeng</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200201</creationdate><title>Intravascular optical coherence tomography image segmentation based on Gaussian mixture model and adaptive fourth-order PDE</title><author>Wang, Pengyu ; Zhu, Hongqing ; Ling, Xiaofeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-76fcb4591dcab08a547e06ac90adeff4b1f56bde4c89d12210373d42809b1d6e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computer Imaging</topic><topic>Computer Science</topic><topic>Energy distribution</topic><topic>Euler-Lagrange equation</topic><topic>Fibrosis</topic><topic>Image Processing and Computer Vision</topic><topic>Image segmentation</topic><topic>Model accuracy</topic><topic>Multimedia Information Systems</topic><topic>Optical Coherence Tomography</topic><topic>Optimization</topic><topic>Original Paper</topic><topic>Parameter estimation</topic><topic>Partial differential equations</topic><topic>Pattern Recognition and Graphics</topic><topic>Probabilistic models</topic><topic>Rayleigh distribution</topic><topic>Signal,Image and Speech Processing</topic><topic>Tomography</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Pengyu</creatorcontrib><creatorcontrib>Zhu, Hongqing</creatorcontrib><creatorcontrib>Ling, Xiaofeng</creatorcontrib><collection>CrossRef</collection><jtitle>Signal, image and video processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Pengyu</au><au>Zhu, Hongqing</au><au>Ling, Xiaofeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intravascular optical coherence tomography image segmentation based on Gaussian mixture model and adaptive fourth-order PDE</atitle><jtitle>Signal, image and video processing</jtitle><stitle>SIViP</stitle><date>2020-02-01</date><risdate>2020</risdate><volume>14</volume><issue>1</issue><spage>29</spage><epage>37</epage><pages>29-37</pages><issn>1863-1703</issn><eissn>1863-1711</eissn><abstract>The accuracy of the fibrotic plaque segmentation is vital in identifying the coronary artery stenosis. In this paper, we address an automated approach (APDE-GMM) for separating the fibrotic plaque area of intravascular optical coherence tomography (IV-OCT) images. Under this approach, an objective function consisting of a new energy functional with Rayleigh distribution and the negative log-likelihood function of Gaussian mixture model (GMM) is developed. Also, the study presents an adaptive diffusivity function where the gradient threshold can be associated to suppress the effect of speckle noise. The parameter estimation is carried out by the expectation–maximization technology. In addition, this paper derives a fourth-order partial differential equation (PDE) via Euler–Lagrange equation to obtain the optimal solutions. It has been compared to other segmentation approaches on synthetic and clinical IV-OCT images. The results demonstrate that APDE-GMM segmentates more accurately.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s11760-019-01520-6</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1863-1703
ispartof Signal, image and video processing, 2020-02, Vol.14 (1), p.29-37
issn 1863-1703
1863-1711
language eng
recordid cdi_proquest_journals_2346493893
source SpringerNature Journals
subjects Computer Imaging
Computer Science
Energy distribution
Euler-Lagrange equation
Fibrosis
Image Processing and Computer Vision
Image segmentation
Model accuracy
Multimedia Information Systems
Optical Coherence Tomography
Optimization
Original Paper
Parameter estimation
Partial differential equations
Pattern Recognition and Graphics
Probabilistic models
Rayleigh distribution
Signal,Image and Speech Processing
Tomography
Vision
title Intravascular optical coherence tomography image segmentation based on Gaussian mixture model and adaptive fourth-order PDE
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T14%3A56%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intravascular%20optical%20coherence%20tomography%20image%20segmentation%20based%20on%20Gaussian%20mixture%20model%20and%20adaptive%20fourth-order%20PDE&rft.jtitle=Signal,%20image%20and%20video%20processing&rft.au=Wang,%20Pengyu&rft.date=2020-02-01&rft.volume=14&rft.issue=1&rft.spage=29&rft.epage=37&rft.pages=29-37&rft.issn=1863-1703&rft.eissn=1863-1711&rft_id=info:doi/10.1007/s11760-019-01520-6&rft_dat=%3Cproquest_cross%3E2346493893%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2346493893&rft_id=info:pmid/&rfr_iscdi=true