A simple kernel co‐occurrence‐based enhancement for pseudo‐relevance feedback

Pseudo‐relevance feedback is a well‐studied query expansion technique in which it is assumed that the top‐ranked documents in an initial set of retrieval results are relevant and expansion terms are then extracted from those documents. When selecting expansion terms, most traditional models do not s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Society for Information Science and Technology 2020-03, Vol.71 (3), p.264-281
Hauptverfasser: Pan, Min, Huang, Jimmy Xiangji, He, Tingting, Mao, Zhiming, Ying, Zhiwei, Tu, Xinhui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 281
container_issue 3
container_start_page 264
container_title Journal of the American Society for Information Science and Technology
container_volume 71
creator Pan, Min
Huang, Jimmy Xiangji
He, Tingting
Mao, Zhiming
Ying, Zhiwei
Tu, Xinhui
description Pseudo‐relevance feedback is a well‐studied query expansion technique in which it is assumed that the top‐ranked documents in an initial set of retrieval results are relevant and expansion terms are then extracted from those documents. When selecting expansion terms, most traditional models do not simultaneously consider term frequency and the co‐occurrence relationships between candidate terms and query terms. Intuitively, however, a term that has a higher co‐occurrence with a query term is more likely to be related to the query topic. In this article, we propose a kernel co‐occurrence‐based framework to enhance retrieval performance by integrating term co‐occurrence information into the Rocchio model and a relevance language model (RM3). Specifically, a kernel co‐occurrence‐based Rocchio method (KRoc) and a kernel co‐occurrence‐based RM3 method (KRM3) are proposed. In our framework, co‐occurrence information is incorporated into both the factor of the term discrimination power and the factor of the within‐document term weight to boost retrieval performance. The results of a series of experiments show that our proposed methods significantly outperform the corresponding strong baselines over all data sets in terms of the mean average precision and over most data sets in terms of P@10. A direct comparison of standard Text Retrieval Conference data sets indicates that our proposed methods are at least comparable to state‐of‐the‐art approaches.
doi_str_mv 10.1002/asi.24241
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2346391964</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2346391964</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3451-5f998cf4664dac45dc05f410068403b136c0984a2815660ee0baacf21712e8913</originalsourceid><addsrcrecordid>eNp1kEtOwzAQhi0EElXpghtYYsUircd2TLKsKh6VKrEorC3HGYu0aRLsBtQdR-CMnASXIHasZkbzzeP_CbkENgXG-MyEasoll3BCRlwIloCS4vQvF-k5mYSwYYwBy7OUw4is5zRUu65GukXfYE1t-_Xx2Vrbe4-NxVgUJmBJsXkxsd5hs6eu9bQL2JdH1mONb8cWdYhlYez2gpw5Uwec_MYxeb67fVo8JKvH--VivkqskCkkqcvzzDqplCyNlWlpWepkFKIyyUQBQtn4pTQ8g1QphsgKY6zjcAMcsxzEmFwNezvfvvYY9nrT9r6JJzUXUokc8qh_TK4Hyvo2BI9Od77aGX_QwPTRNh1t0z-2RXY2sO9VjYf_QT1fL4eJb1_DcCc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2346391964</pqid></control><display><type>article</type><title>A simple kernel co‐occurrence‐based enhancement for pseudo‐relevance feedback</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Business Source Complete</source><creator>Pan, Min ; Huang, Jimmy Xiangji ; He, Tingting ; Mao, Zhiming ; Ying, Zhiwei ; Tu, Xinhui</creator><creatorcontrib>Pan, Min ; Huang, Jimmy Xiangji ; He, Tingting ; Mao, Zhiming ; Ying, Zhiwei ; Tu, Xinhui</creatorcontrib><description>Pseudo‐relevance feedback is a well‐studied query expansion technique in which it is assumed that the top‐ranked documents in an initial set of retrieval results are relevant and expansion terms are then extracted from those documents. When selecting expansion terms, most traditional models do not simultaneously consider term frequency and the co‐occurrence relationships between candidate terms and query terms. Intuitively, however, a term that has a higher co‐occurrence with a query term is more likely to be related to the query topic. In this article, we propose a kernel co‐occurrence‐based framework to enhance retrieval performance by integrating term co‐occurrence information into the Rocchio model and a relevance language model (RM3). Specifically, a kernel co‐occurrence‐based Rocchio method (KRoc) and a kernel co‐occurrence‐based RM3 method (KRM3) are proposed. In our framework, co‐occurrence information is incorporated into both the factor of the term discrimination power and the factor of the within‐document term weight to boost retrieval performance. The results of a series of experiments show that our proposed methods significantly outperform the corresponding strong baselines over all data sets in terms of the mean average precision and over most data sets in terms of P@10. A direct comparison of standard Text Retrieval Conference data sets indicates that our proposed methods are at least comparable to state‐of‐the‐art approaches.</description><identifier>ISSN: 2330-1635</identifier><identifier>EISSN: 2330-1643</identifier><identifier>DOI: 10.1002/asi.24241</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Datasets ; Feedback ; Information Retrieval ; Kernels ; Queries ; Query expansion ; Relevance feedback ; Retrieval ; Word meaning</subject><ispartof>Journal of the American Society for Information Science and Technology, 2020-03, Vol.71 (3), p.264-281</ispartof><rights>2019 ASIS&amp;T</rights><rights>2020 ASIS&amp;T</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3451-5f998cf4664dac45dc05f410068403b136c0984a2815660ee0baacf21712e8913</citedby><cites>FETCH-LOGICAL-c3451-5f998cf4664dac45dc05f410068403b136c0984a2815660ee0baacf21712e8913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fasi.24241$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fasi.24241$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Pan, Min</creatorcontrib><creatorcontrib>Huang, Jimmy Xiangji</creatorcontrib><creatorcontrib>He, Tingting</creatorcontrib><creatorcontrib>Mao, Zhiming</creatorcontrib><creatorcontrib>Ying, Zhiwei</creatorcontrib><creatorcontrib>Tu, Xinhui</creatorcontrib><title>A simple kernel co‐occurrence‐based enhancement for pseudo‐relevance feedback</title><title>Journal of the American Society for Information Science and Technology</title><description>Pseudo‐relevance feedback is a well‐studied query expansion technique in which it is assumed that the top‐ranked documents in an initial set of retrieval results are relevant and expansion terms are then extracted from those documents. When selecting expansion terms, most traditional models do not simultaneously consider term frequency and the co‐occurrence relationships between candidate terms and query terms. Intuitively, however, a term that has a higher co‐occurrence with a query term is more likely to be related to the query topic. In this article, we propose a kernel co‐occurrence‐based framework to enhance retrieval performance by integrating term co‐occurrence information into the Rocchio model and a relevance language model (RM3). Specifically, a kernel co‐occurrence‐based Rocchio method (KRoc) and a kernel co‐occurrence‐based RM3 method (KRM3) are proposed. In our framework, co‐occurrence information is incorporated into both the factor of the term discrimination power and the factor of the within‐document term weight to boost retrieval performance. The results of a series of experiments show that our proposed methods significantly outperform the corresponding strong baselines over all data sets in terms of the mean average precision and over most data sets in terms of P@10. A direct comparison of standard Text Retrieval Conference data sets indicates that our proposed methods are at least comparable to state‐of‐the‐art approaches.</description><subject>Datasets</subject><subject>Feedback</subject><subject>Information Retrieval</subject><subject>Kernels</subject><subject>Queries</subject><subject>Query expansion</subject><subject>Relevance feedback</subject><subject>Retrieval</subject><subject>Word meaning</subject><issn>2330-1635</issn><issn>2330-1643</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kEtOwzAQhi0EElXpghtYYsUircd2TLKsKh6VKrEorC3HGYu0aRLsBtQdR-CMnASXIHasZkbzzeP_CbkENgXG-MyEasoll3BCRlwIloCS4vQvF-k5mYSwYYwBy7OUw4is5zRUu65GukXfYE1t-_Xx2Vrbe4-NxVgUJmBJsXkxsd5hs6eu9bQL2JdH1mONb8cWdYhlYez2gpw5Uwec_MYxeb67fVo8JKvH--VivkqskCkkqcvzzDqplCyNlWlpWepkFKIyyUQBQtn4pTQ8g1QphsgKY6zjcAMcsxzEmFwNezvfvvYY9nrT9r6JJzUXUokc8qh_TK4Hyvo2BI9Od77aGX_QwPTRNh1t0z-2RXY2sO9VjYf_QT1fL4eJb1_DcCc</recordid><startdate>202003</startdate><enddate>202003</enddate><creator>Pan, Min</creator><creator>Huang, Jimmy Xiangji</creator><creator>He, Tingting</creator><creator>Mao, Zhiming</creator><creator>Ying, Zhiwei</creator><creator>Tu, Xinhui</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Periodicals Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>E3H</scope><scope>F2A</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>202003</creationdate><title>A simple kernel co‐occurrence‐based enhancement for pseudo‐relevance feedback</title><author>Pan, Min ; Huang, Jimmy Xiangji ; He, Tingting ; Mao, Zhiming ; Ying, Zhiwei ; Tu, Xinhui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3451-5f998cf4664dac45dc05f410068403b136c0984a2815660ee0baacf21712e8913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Datasets</topic><topic>Feedback</topic><topic>Information Retrieval</topic><topic>Kernels</topic><topic>Queries</topic><topic>Query expansion</topic><topic>Relevance feedback</topic><topic>Retrieval</topic><topic>Word meaning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan, Min</creatorcontrib><creatorcontrib>Huang, Jimmy Xiangji</creatorcontrib><creatorcontrib>He, Tingting</creatorcontrib><creatorcontrib>Mao, Zhiming</creatorcontrib><creatorcontrib>Ying, Zhiwei</creatorcontrib><creatorcontrib>Tu, Xinhui</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of the American Society for Information Science and Technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pan, Min</au><au>Huang, Jimmy Xiangji</au><au>He, Tingting</au><au>Mao, Zhiming</au><au>Ying, Zhiwei</au><au>Tu, Xinhui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A simple kernel co‐occurrence‐based enhancement for pseudo‐relevance feedback</atitle><jtitle>Journal of the American Society for Information Science and Technology</jtitle><date>2020-03</date><risdate>2020</risdate><volume>71</volume><issue>3</issue><spage>264</spage><epage>281</epage><pages>264-281</pages><issn>2330-1635</issn><eissn>2330-1643</eissn><abstract>Pseudo‐relevance feedback is a well‐studied query expansion technique in which it is assumed that the top‐ranked documents in an initial set of retrieval results are relevant and expansion terms are then extracted from those documents. When selecting expansion terms, most traditional models do not simultaneously consider term frequency and the co‐occurrence relationships between candidate terms and query terms. Intuitively, however, a term that has a higher co‐occurrence with a query term is more likely to be related to the query topic. In this article, we propose a kernel co‐occurrence‐based framework to enhance retrieval performance by integrating term co‐occurrence information into the Rocchio model and a relevance language model (RM3). Specifically, a kernel co‐occurrence‐based Rocchio method (KRoc) and a kernel co‐occurrence‐based RM3 method (KRM3) are proposed. In our framework, co‐occurrence information is incorporated into both the factor of the term discrimination power and the factor of the within‐document term weight to boost retrieval performance. The results of a series of experiments show that our proposed methods significantly outperform the corresponding strong baselines over all data sets in terms of the mean average precision and over most data sets in terms of P@10. A direct comparison of standard Text Retrieval Conference data sets indicates that our proposed methods are at least comparable to state‐of‐the‐art approaches.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/asi.24241</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2330-1635
ispartof Journal of the American Society for Information Science and Technology, 2020-03, Vol.71 (3), p.264-281
issn 2330-1635
2330-1643
language eng
recordid cdi_proquest_journals_2346391964
source Wiley Online Library Journals Frontfile Complete; Business Source Complete
subjects Datasets
Feedback
Information Retrieval
Kernels
Queries
Query expansion
Relevance feedback
Retrieval
Word meaning
title A simple kernel co‐occurrence‐based enhancement for pseudo‐relevance feedback
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T11%3A53%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20simple%20kernel%20co%E2%80%90occurrence%E2%80%90based%20enhancement%20for%20pseudo%E2%80%90relevance%20feedback&rft.jtitle=Journal%20of%20the%20American%20Society%20for%20Information%20Science%20and%20Technology&rft.au=Pan,%20Min&rft.date=2020-03&rft.volume=71&rft.issue=3&rft.spage=264&rft.epage=281&rft.pages=264-281&rft.issn=2330-1635&rft.eissn=2330-1643&rft_id=info:doi/10.1002/asi.24241&rft_dat=%3Cproquest_cross%3E2346391964%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2346391964&rft_id=info:pmid/&rfr_iscdi=true