A simple kernel co‐occurrence‐based enhancement for pseudo‐relevance feedback
Pseudo‐relevance feedback is a well‐studied query expansion technique in which it is assumed that the top‐ranked documents in an initial set of retrieval results are relevant and expansion terms are then extracted from those documents. When selecting expansion terms, most traditional models do not s...
Gespeichert in:
Veröffentlicht in: | Journal of the American Society for Information Science and Technology 2020-03, Vol.71 (3), p.264-281 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 281 |
---|---|
container_issue | 3 |
container_start_page | 264 |
container_title | Journal of the American Society for Information Science and Technology |
container_volume | 71 |
creator | Pan, Min Huang, Jimmy Xiangji He, Tingting Mao, Zhiming Ying, Zhiwei Tu, Xinhui |
description | Pseudo‐relevance feedback is a well‐studied query expansion technique in which it is assumed that the top‐ranked documents in an initial set of retrieval results are relevant and expansion terms are then extracted from those documents. When selecting expansion terms, most traditional models do not simultaneously consider term frequency and the co‐occurrence relationships between candidate terms and query terms. Intuitively, however, a term that has a higher co‐occurrence with a query term is more likely to be related to the query topic. In this article, we propose a kernel co‐occurrence‐based framework to enhance retrieval performance by integrating term co‐occurrence information into the Rocchio model and a relevance language model (RM3). Specifically, a kernel co‐occurrence‐based Rocchio method (KRoc) and a kernel co‐occurrence‐based RM3 method (KRM3) are proposed. In our framework, co‐occurrence information is incorporated into both the factor of the term discrimination power and the factor of the within‐document term weight to boost retrieval performance. The results of a series of experiments show that our proposed methods significantly outperform the corresponding strong baselines over all data sets in terms of the mean average precision and over most data sets in terms of P@10. A direct comparison of standard Text Retrieval Conference data sets indicates that our proposed methods are at least comparable to state‐of‐the‐art approaches. |
doi_str_mv | 10.1002/asi.24241 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2346391964</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2346391964</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3451-5f998cf4664dac45dc05f410068403b136c0984a2815660ee0baacf21712e8913</originalsourceid><addsrcrecordid>eNp1kEtOwzAQhi0EElXpghtYYsUircd2TLKsKh6VKrEorC3HGYu0aRLsBtQdR-CMnASXIHasZkbzzeP_CbkENgXG-MyEasoll3BCRlwIloCS4vQvF-k5mYSwYYwBy7OUw4is5zRUu65GukXfYE1t-_Xx2Vrbe4-NxVgUJmBJsXkxsd5hs6eu9bQL2JdH1mONb8cWdYhlYez2gpw5Uwec_MYxeb67fVo8JKvH--VivkqskCkkqcvzzDqplCyNlWlpWepkFKIyyUQBQtn4pTQ8g1QphsgKY6zjcAMcsxzEmFwNezvfvvYY9nrT9r6JJzUXUokc8qh_TK4Hyvo2BI9Od77aGX_QwPTRNh1t0z-2RXY2sO9VjYf_QT1fL4eJb1_DcCc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2346391964</pqid></control><display><type>article</type><title>A simple kernel co‐occurrence‐based enhancement for pseudo‐relevance feedback</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Business Source Complete</source><creator>Pan, Min ; Huang, Jimmy Xiangji ; He, Tingting ; Mao, Zhiming ; Ying, Zhiwei ; Tu, Xinhui</creator><creatorcontrib>Pan, Min ; Huang, Jimmy Xiangji ; He, Tingting ; Mao, Zhiming ; Ying, Zhiwei ; Tu, Xinhui</creatorcontrib><description>Pseudo‐relevance feedback is a well‐studied query expansion technique in which it is assumed that the top‐ranked documents in an initial set of retrieval results are relevant and expansion terms are then extracted from those documents. When selecting expansion terms, most traditional models do not simultaneously consider term frequency and the co‐occurrence relationships between candidate terms and query terms. Intuitively, however, a term that has a higher co‐occurrence with a query term is more likely to be related to the query topic. In this article, we propose a kernel co‐occurrence‐based framework to enhance retrieval performance by integrating term co‐occurrence information into the Rocchio model and a relevance language model (RM3). Specifically, a kernel co‐occurrence‐based Rocchio method (KRoc) and a kernel co‐occurrence‐based RM3 method (KRM3) are proposed. In our framework, co‐occurrence information is incorporated into both the factor of the term discrimination power and the factor of the within‐document term weight to boost retrieval performance. The results of a series of experiments show that our proposed methods significantly outperform the corresponding strong baselines over all data sets in terms of the mean average precision and over most data sets in terms of P@10. A direct comparison of standard Text Retrieval Conference data sets indicates that our proposed methods are at least comparable to state‐of‐the‐art approaches.</description><identifier>ISSN: 2330-1635</identifier><identifier>EISSN: 2330-1643</identifier><identifier>DOI: 10.1002/asi.24241</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Datasets ; Feedback ; Information Retrieval ; Kernels ; Queries ; Query expansion ; Relevance feedback ; Retrieval ; Word meaning</subject><ispartof>Journal of the American Society for Information Science and Technology, 2020-03, Vol.71 (3), p.264-281</ispartof><rights>2019 ASIS&T</rights><rights>2020 ASIS&T</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3451-5f998cf4664dac45dc05f410068403b136c0984a2815660ee0baacf21712e8913</citedby><cites>FETCH-LOGICAL-c3451-5f998cf4664dac45dc05f410068403b136c0984a2815660ee0baacf21712e8913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fasi.24241$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fasi.24241$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Pan, Min</creatorcontrib><creatorcontrib>Huang, Jimmy Xiangji</creatorcontrib><creatorcontrib>He, Tingting</creatorcontrib><creatorcontrib>Mao, Zhiming</creatorcontrib><creatorcontrib>Ying, Zhiwei</creatorcontrib><creatorcontrib>Tu, Xinhui</creatorcontrib><title>A simple kernel co‐occurrence‐based enhancement for pseudo‐relevance feedback</title><title>Journal of the American Society for Information Science and Technology</title><description>Pseudo‐relevance feedback is a well‐studied query expansion technique in which it is assumed that the top‐ranked documents in an initial set of retrieval results are relevant and expansion terms are then extracted from those documents. When selecting expansion terms, most traditional models do not simultaneously consider term frequency and the co‐occurrence relationships between candidate terms and query terms. Intuitively, however, a term that has a higher co‐occurrence with a query term is more likely to be related to the query topic. In this article, we propose a kernel co‐occurrence‐based framework to enhance retrieval performance by integrating term co‐occurrence information into the Rocchio model and a relevance language model (RM3). Specifically, a kernel co‐occurrence‐based Rocchio method (KRoc) and a kernel co‐occurrence‐based RM3 method (KRM3) are proposed. In our framework, co‐occurrence information is incorporated into both the factor of the term discrimination power and the factor of the within‐document term weight to boost retrieval performance. The results of a series of experiments show that our proposed methods significantly outperform the corresponding strong baselines over all data sets in terms of the mean average precision and over most data sets in terms of P@10. A direct comparison of standard Text Retrieval Conference data sets indicates that our proposed methods are at least comparable to state‐of‐the‐art approaches.</description><subject>Datasets</subject><subject>Feedback</subject><subject>Information Retrieval</subject><subject>Kernels</subject><subject>Queries</subject><subject>Query expansion</subject><subject>Relevance feedback</subject><subject>Retrieval</subject><subject>Word meaning</subject><issn>2330-1635</issn><issn>2330-1643</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kEtOwzAQhi0EElXpghtYYsUircd2TLKsKh6VKrEorC3HGYu0aRLsBtQdR-CMnASXIHasZkbzzeP_CbkENgXG-MyEasoll3BCRlwIloCS4vQvF-k5mYSwYYwBy7OUw4is5zRUu65GukXfYE1t-_Xx2Vrbe4-NxVgUJmBJsXkxsd5hs6eu9bQL2JdH1mONb8cWdYhlYez2gpw5Uwec_MYxeb67fVo8JKvH--VivkqskCkkqcvzzDqplCyNlWlpWepkFKIyyUQBQtn4pTQ8g1QphsgKY6zjcAMcsxzEmFwNezvfvvYY9nrT9r6JJzUXUokc8qh_TK4Hyvo2BI9Od77aGX_QwPTRNh1t0z-2RXY2sO9VjYf_QT1fL4eJb1_DcCc</recordid><startdate>202003</startdate><enddate>202003</enddate><creator>Pan, Min</creator><creator>Huang, Jimmy Xiangji</creator><creator>He, Tingting</creator><creator>Mao, Zhiming</creator><creator>Ying, Zhiwei</creator><creator>Tu, Xinhui</creator><general>John Wiley & Sons, Inc</general><general>Wiley Periodicals Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>E3H</scope><scope>F2A</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>202003</creationdate><title>A simple kernel co‐occurrence‐based enhancement for pseudo‐relevance feedback</title><author>Pan, Min ; Huang, Jimmy Xiangji ; He, Tingting ; Mao, Zhiming ; Ying, Zhiwei ; Tu, Xinhui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3451-5f998cf4664dac45dc05f410068403b136c0984a2815660ee0baacf21712e8913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Datasets</topic><topic>Feedback</topic><topic>Information Retrieval</topic><topic>Kernels</topic><topic>Queries</topic><topic>Query expansion</topic><topic>Relevance feedback</topic><topic>Retrieval</topic><topic>Word meaning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan, Min</creatorcontrib><creatorcontrib>Huang, Jimmy Xiangji</creatorcontrib><creatorcontrib>He, Tingting</creatorcontrib><creatorcontrib>Mao, Zhiming</creatorcontrib><creatorcontrib>Ying, Zhiwei</creatorcontrib><creatorcontrib>Tu, Xinhui</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Library & Information Sciences Abstracts (LISA)</collection><collection>Library & Information Science Abstracts (LISA)</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of the American Society for Information Science and Technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pan, Min</au><au>Huang, Jimmy Xiangji</au><au>He, Tingting</au><au>Mao, Zhiming</au><au>Ying, Zhiwei</au><au>Tu, Xinhui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A simple kernel co‐occurrence‐based enhancement for pseudo‐relevance feedback</atitle><jtitle>Journal of the American Society for Information Science and Technology</jtitle><date>2020-03</date><risdate>2020</risdate><volume>71</volume><issue>3</issue><spage>264</spage><epage>281</epage><pages>264-281</pages><issn>2330-1635</issn><eissn>2330-1643</eissn><abstract>Pseudo‐relevance feedback is a well‐studied query expansion technique in which it is assumed that the top‐ranked documents in an initial set of retrieval results are relevant and expansion terms are then extracted from those documents. When selecting expansion terms, most traditional models do not simultaneously consider term frequency and the co‐occurrence relationships between candidate terms and query terms. Intuitively, however, a term that has a higher co‐occurrence with a query term is more likely to be related to the query topic. In this article, we propose a kernel co‐occurrence‐based framework to enhance retrieval performance by integrating term co‐occurrence information into the Rocchio model and a relevance language model (RM3). Specifically, a kernel co‐occurrence‐based Rocchio method (KRoc) and a kernel co‐occurrence‐based RM3 method (KRM3) are proposed. In our framework, co‐occurrence information is incorporated into both the factor of the term discrimination power and the factor of the within‐document term weight to boost retrieval performance. The results of a series of experiments show that our proposed methods significantly outperform the corresponding strong baselines over all data sets in terms of the mean average precision and over most data sets in terms of P@10. A direct comparison of standard Text Retrieval Conference data sets indicates that our proposed methods are at least comparable to state‐of‐the‐art approaches.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/asi.24241</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2330-1635 |
ispartof | Journal of the American Society for Information Science and Technology, 2020-03, Vol.71 (3), p.264-281 |
issn | 2330-1635 2330-1643 |
language | eng |
recordid | cdi_proquest_journals_2346391964 |
source | Wiley Online Library Journals Frontfile Complete; Business Source Complete |
subjects | Datasets Feedback Information Retrieval Kernels Queries Query expansion Relevance feedback Retrieval Word meaning |
title | A simple kernel co‐occurrence‐based enhancement for pseudo‐relevance feedback |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T11%3A53%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20simple%20kernel%20co%E2%80%90occurrence%E2%80%90based%20enhancement%20for%20pseudo%E2%80%90relevance%20feedback&rft.jtitle=Journal%20of%20the%20American%20Society%20for%20Information%20Science%20and%20Technology&rft.au=Pan,%20Min&rft.date=2020-03&rft.volume=71&rft.issue=3&rft.spage=264&rft.epage=281&rft.pages=264-281&rft.issn=2330-1635&rft.eissn=2330-1643&rft_id=info:doi/10.1002/asi.24241&rft_dat=%3Cproquest_cross%3E2346391964%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2346391964&rft_id=info:pmid/&rfr_iscdi=true |