The initial high-energy phenomena of earthquake sources in fluid-saturated environments
Experimental data pertaining to weak faults requires construction of microscopic models of the earthquake sources. This study proposes a new high-energy mechanism of transformation of potential energy of strata, saturated with free or bounded fluids, into a kinetic energy of motion of rocks. The pro...
Gespeichert in:
Veröffentlicht in: | Journal of seismology 2020-02, Vol.24 (1), p.133-147 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 147 |
---|---|
container_issue | 1 |
container_start_page | 133 |
container_title | Journal of seismology |
container_volume | 24 |
creator | Kaim, Sergii D. |
description | Experimental data pertaining to weak faults requires construction of microscopic models of the earthquake sources. This study proposes a new high-energy mechanism of transformation of potential energy of strata, saturated with free or bounded fluids, into a kinetic energy of motion of rocks. The proposed approach relies within the framework of classic statistical theory. The high-energy phenomena at a nanometer level are generated by self-consistent molecular fields acting on individual particles. The analysis is carried out using the Bogolyubov-Born-Green-Kirkwood-Yvon equations for the particle group distribution functions. We have investigated the number of high-energy phenomena: (1) the emission of atoms and molecules with high energies from the abruptly opened surface of a condensed system; (2) the implosion of convergent streams of high-energy particles, accompanied by a phenomena of their shock dissociation and ionization, with a subsequent formation of partially ionized plasma; and (3) the recombination processes inside a plasma leading to a formation of molecules with high kinetic energies. The initiation of an earthquake occurs due to an abrupt opening of a cavity in the fluid-saturated medium. At certain thermodynamic conditions, the work function of atoms and molecules from the surface of the system may take negative values. As a result, the emission of molecules of fluids from the cavity walls will generate the high-speed streams of molecules. The emitted flux of molecules leads to the phenomena of implosion, impact dissociation, and ionization of the molecules. This plasma state of the medium is sufficient for an explosion. The explosion initiates a self-supporting chain of consequent explosions in a plane of the tectonic fault. As an example, we have considered the Bridgman explosion of serpentinite. |
doi_str_mv | 10.1007/s10950-019-09893-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2346359733</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2346359733</sourcerecordid><originalsourceid>FETCH-LOGICAL-a342t-c175dc5d89e464225cc11f3af5bcf8c9b2190cffaf0418b59c8840e5e5180b413</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwFPAczTZJN3kKMV_UPBS0VvIZifdrW22TXaFfntjV_DmZWYY3m_m8RC6ZvSWUVreJUa1pIQyTahWmhNxgiZMlpzk8nGaZ67ycib0ObpIaU3pUTZB78sGcBvavrUb3LSrhkCAuDrgXQOh20KwuPMYbOyb_WA_AaduiA5SZrDfDG1Nku2HaHuoMYSvNnYhQ326RGfebhJc_fYpent8WM6fyeL16WV-vyCWi6InjpWydrJWGrK5opDOMea59bJyXjldFUxT5731VDBVSe2UEhQkSKZoJRifopvx7i52-wFSb9bZYMgvTcHFjEtdcp5VxahysUspgje72G5tPBhGzU-AZgzQ5ADNMRkjMsRHKGVxWEH8O_0P9Q0UInTO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2346359733</pqid></control><display><type>article</type><title>The initial high-energy phenomena of earthquake sources in fluid-saturated environments</title><source>SpringerLink Journals - AutoHoldings</source><creator>Kaim, Sergii D.</creator><creatorcontrib>Kaim, Sergii D.</creatorcontrib><description>Experimental data pertaining to weak faults requires construction of microscopic models of the earthquake sources. This study proposes a new high-energy mechanism of transformation of potential energy of strata, saturated with free or bounded fluids, into a kinetic energy of motion of rocks. The proposed approach relies within the framework of classic statistical theory. The high-energy phenomena at a nanometer level are generated by self-consistent molecular fields acting on individual particles. The analysis is carried out using the Bogolyubov-Born-Green-Kirkwood-Yvon equations for the particle group distribution functions. We have investigated the number of high-energy phenomena: (1) the emission of atoms and molecules with high energies from the abruptly opened surface of a condensed system; (2) the implosion of convergent streams of high-energy particles, accompanied by a phenomena of their shock dissociation and ionization, with a subsequent formation of partially ionized plasma; and (3) the recombination processes inside a plasma leading to a formation of molecules with high kinetic energies. The initiation of an earthquake occurs due to an abrupt opening of a cavity in the fluid-saturated medium. At certain thermodynamic conditions, the work function of atoms and molecules from the surface of the system may take negative values. As a result, the emission of molecules of fluids from the cavity walls will generate the high-speed streams of molecules. The emitted flux of molecules leads to the phenomena of implosion, impact dissociation, and ionization of the molecules. This plasma state of the medium is sufficient for an explosion. The explosion initiates a self-supporting chain of consequent explosions in a plane of the tectonic fault. As an example, we have considered the Bridgman explosion of serpentinite.</description><identifier>ISSN: 1383-4649</identifier><identifier>EISSN: 1573-157X</identifier><identifier>DOI: 10.1007/s10950-019-09893-4</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Atomic properties ; Atoms & subatomic particles ; Computational fluid dynamics ; Dissociation ; Distribution functions ; Earth and Environmental Science ; Earth Sciences ; Earthquakes ; Emission analysis ; Emissions ; Energy ; Explosions ; Fluids ; Geophysics/Geodesy ; Geotechnical Engineering & Applied Earth Sciences ; Hydrogeology ; Implosions ; Ionization ; Kinetic energy ; Original Article ; Potential energy ; Recombination ; Rivers ; Seismic activity ; Seismology ; Serpentinite ; Streams ; Structural Geology ; Tectonics ; Work functions</subject><ispartof>Journal of seismology, 2020-02, Vol.24 (1), p.133-147</ispartof><rights>Springer Nature B.V. 2019</rights><rights>Journal of Seismology is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a342t-c175dc5d89e464225cc11f3af5bcf8c9b2190cffaf0418b59c8840e5e5180b413</citedby><cites>FETCH-LOGICAL-a342t-c175dc5d89e464225cc11f3af5bcf8c9b2190cffaf0418b59c8840e5e5180b413</cites><orcidid>0000-0002-8841-3250</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10950-019-09893-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10950-019-09893-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Kaim, Sergii D.</creatorcontrib><title>The initial high-energy phenomena of earthquake sources in fluid-saturated environments</title><title>Journal of seismology</title><addtitle>J Seismol</addtitle><description>Experimental data pertaining to weak faults requires construction of microscopic models of the earthquake sources. This study proposes a new high-energy mechanism of transformation of potential energy of strata, saturated with free or bounded fluids, into a kinetic energy of motion of rocks. The proposed approach relies within the framework of classic statistical theory. The high-energy phenomena at a nanometer level are generated by self-consistent molecular fields acting on individual particles. The analysis is carried out using the Bogolyubov-Born-Green-Kirkwood-Yvon equations for the particle group distribution functions. We have investigated the number of high-energy phenomena: (1) the emission of atoms and molecules with high energies from the abruptly opened surface of a condensed system; (2) the implosion of convergent streams of high-energy particles, accompanied by a phenomena of their shock dissociation and ionization, with a subsequent formation of partially ionized plasma; and (3) the recombination processes inside a plasma leading to a formation of molecules with high kinetic energies. The initiation of an earthquake occurs due to an abrupt opening of a cavity in the fluid-saturated medium. At certain thermodynamic conditions, the work function of atoms and molecules from the surface of the system may take negative values. As a result, the emission of molecules of fluids from the cavity walls will generate the high-speed streams of molecules. The emitted flux of molecules leads to the phenomena of implosion, impact dissociation, and ionization of the molecules. This plasma state of the medium is sufficient for an explosion. The explosion initiates a self-supporting chain of consequent explosions in a plane of the tectonic fault. As an example, we have considered the Bridgman explosion of serpentinite.</description><subject>Atomic properties</subject><subject>Atoms & subatomic particles</subject><subject>Computational fluid dynamics</subject><subject>Dissociation</subject><subject>Distribution functions</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Earthquakes</subject><subject>Emission analysis</subject><subject>Emissions</subject><subject>Energy</subject><subject>Explosions</subject><subject>Fluids</subject><subject>Geophysics/Geodesy</subject><subject>Geotechnical Engineering & Applied Earth Sciences</subject><subject>Hydrogeology</subject><subject>Implosions</subject><subject>Ionization</subject><subject>Kinetic energy</subject><subject>Original Article</subject><subject>Potential energy</subject><subject>Recombination</subject><subject>Rivers</subject><subject>Seismic activity</subject><subject>Seismology</subject><subject>Serpentinite</subject><subject>Streams</subject><subject>Structural Geology</subject><subject>Tectonics</subject><subject>Work functions</subject><issn>1383-4649</issn><issn>1573-157X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE9LAzEQxYMoWKtfwFPAczTZJN3kKMV_UPBS0VvIZifdrW22TXaFfntjV_DmZWYY3m_m8RC6ZvSWUVreJUa1pIQyTahWmhNxgiZMlpzk8nGaZ67ycib0ObpIaU3pUTZB78sGcBvavrUb3LSrhkCAuDrgXQOh20KwuPMYbOyb_WA_AaduiA5SZrDfDG1Nku2HaHuoMYSvNnYhQ326RGfebhJc_fYpent8WM6fyeL16WV-vyCWi6InjpWydrJWGrK5opDOMea59bJyXjldFUxT5731VDBVSe2UEhQkSKZoJRifopvx7i52-wFSb9bZYMgvTcHFjEtdcp5VxahysUspgje72G5tPBhGzU-AZgzQ5ADNMRkjMsRHKGVxWEH8O_0P9Q0UInTO</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Kaim, Sergii D.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-8841-3250</orcidid></search><sort><creationdate>20200201</creationdate><title>The initial high-energy phenomena of earthquake sources in fluid-saturated environments</title><author>Kaim, Sergii D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a342t-c175dc5d89e464225cc11f3af5bcf8c9b2190cffaf0418b59c8840e5e5180b413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Atomic properties</topic><topic>Atoms & subatomic particles</topic><topic>Computational fluid dynamics</topic><topic>Dissociation</topic><topic>Distribution functions</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Earthquakes</topic><topic>Emission analysis</topic><topic>Emissions</topic><topic>Energy</topic><topic>Explosions</topic><topic>Fluids</topic><topic>Geophysics/Geodesy</topic><topic>Geotechnical Engineering & Applied Earth Sciences</topic><topic>Hydrogeology</topic><topic>Implosions</topic><topic>Ionization</topic><topic>Kinetic energy</topic><topic>Original Article</topic><topic>Potential energy</topic><topic>Recombination</topic><topic>Rivers</topic><topic>Seismic activity</topic><topic>Seismology</topic><topic>Serpentinite</topic><topic>Streams</topic><topic>Structural Geology</topic><topic>Tectonics</topic><topic>Work functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kaim, Sergii D.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Engineering Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Journal of seismology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaim, Sergii D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The initial high-energy phenomena of earthquake sources in fluid-saturated environments</atitle><jtitle>Journal of seismology</jtitle><stitle>J Seismol</stitle><date>2020-02-01</date><risdate>2020</risdate><volume>24</volume><issue>1</issue><spage>133</spage><epage>147</epage><pages>133-147</pages><issn>1383-4649</issn><eissn>1573-157X</eissn><abstract>Experimental data pertaining to weak faults requires construction of microscopic models of the earthquake sources. This study proposes a new high-energy mechanism of transformation of potential energy of strata, saturated with free or bounded fluids, into a kinetic energy of motion of rocks. The proposed approach relies within the framework of classic statistical theory. The high-energy phenomena at a nanometer level are generated by self-consistent molecular fields acting on individual particles. The analysis is carried out using the Bogolyubov-Born-Green-Kirkwood-Yvon equations for the particle group distribution functions. We have investigated the number of high-energy phenomena: (1) the emission of atoms and molecules with high energies from the abruptly opened surface of a condensed system; (2) the implosion of convergent streams of high-energy particles, accompanied by a phenomena of their shock dissociation and ionization, with a subsequent formation of partially ionized plasma; and (3) the recombination processes inside a plasma leading to a formation of molecules with high kinetic energies. The initiation of an earthquake occurs due to an abrupt opening of a cavity in the fluid-saturated medium. At certain thermodynamic conditions, the work function of atoms and molecules from the surface of the system may take negative values. As a result, the emission of molecules of fluids from the cavity walls will generate the high-speed streams of molecules. The emitted flux of molecules leads to the phenomena of implosion, impact dissociation, and ionization of the molecules. This plasma state of the medium is sufficient for an explosion. The explosion initiates a self-supporting chain of consequent explosions in a plane of the tectonic fault. As an example, we have considered the Bridgman explosion of serpentinite.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10950-019-09893-4</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-8841-3250</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1383-4649 |
ispartof | Journal of seismology, 2020-02, Vol.24 (1), p.133-147 |
issn | 1383-4649 1573-157X |
language | eng |
recordid | cdi_proquest_journals_2346359733 |
source | SpringerLink Journals - AutoHoldings |
subjects | Atomic properties Atoms & subatomic particles Computational fluid dynamics Dissociation Distribution functions Earth and Environmental Science Earth Sciences Earthquakes Emission analysis Emissions Energy Explosions Fluids Geophysics/Geodesy Geotechnical Engineering & Applied Earth Sciences Hydrogeology Implosions Ionization Kinetic energy Original Article Potential energy Recombination Rivers Seismic activity Seismology Serpentinite Streams Structural Geology Tectonics Work functions |
title | The initial high-energy phenomena of earthquake sources in fluid-saturated environments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T20%3A28%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20initial%20high-energy%20phenomena%20of%20earthquake%20sources%20in%20fluid-saturated%20environments&rft.jtitle=Journal%20of%20seismology&rft.au=Kaim,%20Sergii%20D.&rft.date=2020-02-01&rft.volume=24&rft.issue=1&rft.spage=133&rft.epage=147&rft.pages=133-147&rft.issn=1383-4649&rft.eissn=1573-157X&rft_id=info:doi/10.1007/s10950-019-09893-4&rft_dat=%3Cproquest_cross%3E2346359733%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2346359733&rft_id=info:pmid/&rfr_iscdi=true |