The initial high-energy phenomena of earthquake sources in fluid-saturated environments

Experimental data pertaining to weak faults requires construction of microscopic models of the earthquake sources. This study proposes a new high-energy mechanism of transformation of potential energy of strata, saturated with free or bounded fluids, into a kinetic energy of motion of rocks. The pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of seismology 2020-02, Vol.24 (1), p.133-147
1. Verfasser: Kaim, Sergii D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 147
container_issue 1
container_start_page 133
container_title Journal of seismology
container_volume 24
creator Kaim, Sergii D.
description Experimental data pertaining to weak faults requires construction of microscopic models of the earthquake sources. This study proposes a new high-energy mechanism of transformation of potential energy of strata, saturated with free or bounded fluids, into a kinetic energy of motion of rocks. The proposed approach relies within the framework of classic statistical theory. The high-energy phenomena at a nanometer level are generated by self-consistent molecular fields acting on individual particles. The analysis is carried out using the Bogolyubov-Born-Green-Kirkwood-Yvon equations for the particle group distribution functions. We have investigated the number of high-energy phenomena: (1) the emission of atoms and molecules with high energies from the abruptly opened surface of a condensed system; (2) the implosion of convergent streams of high-energy particles, accompanied by a phenomena of their shock dissociation and ionization, with a subsequent formation of partially ionized plasma; and (3) the recombination processes inside a plasma leading to a formation of molecules with high kinetic energies. The initiation of an earthquake occurs due to an abrupt opening of a cavity in the fluid-saturated medium. At certain thermodynamic conditions, the work function of atoms and molecules from the surface of the system may take negative values. As a result, the emission of molecules of fluids from the cavity walls will generate the high-speed streams of molecules. The emitted flux of molecules leads to the phenomena of implosion, impact dissociation, and ionization of the molecules. This plasma state of the medium is sufficient for an explosion. The explosion initiates a self-supporting chain of consequent explosions in a plane of the tectonic fault. As an example, we have considered the Bridgman explosion of serpentinite.
doi_str_mv 10.1007/s10950-019-09893-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2346359733</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2346359733</sourcerecordid><originalsourceid>FETCH-LOGICAL-a342t-c175dc5d89e464225cc11f3af5bcf8c9b2190cffaf0418b59c8840e5e5180b413</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwFPAczTZJN3kKMV_UPBS0VvIZifdrW22TXaFfntjV_DmZWYY3m_m8RC6ZvSWUVreJUa1pIQyTahWmhNxgiZMlpzk8nGaZ67ycib0ObpIaU3pUTZB78sGcBvavrUb3LSrhkCAuDrgXQOh20KwuPMYbOyb_WA_AaduiA5SZrDfDG1Nku2HaHuoMYSvNnYhQ326RGfebhJc_fYpent8WM6fyeL16WV-vyCWi6InjpWydrJWGrK5opDOMea59bJyXjldFUxT5731VDBVSe2UEhQkSKZoJRifopvx7i52-wFSb9bZYMgvTcHFjEtdcp5VxahysUspgje72G5tPBhGzU-AZgzQ5ADNMRkjMsRHKGVxWEH8O_0P9Q0UInTO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2346359733</pqid></control><display><type>article</type><title>The initial high-energy phenomena of earthquake sources in fluid-saturated environments</title><source>SpringerLink Journals - AutoHoldings</source><creator>Kaim, Sergii D.</creator><creatorcontrib>Kaim, Sergii D.</creatorcontrib><description>Experimental data pertaining to weak faults requires construction of microscopic models of the earthquake sources. This study proposes a new high-energy mechanism of transformation of potential energy of strata, saturated with free or bounded fluids, into a kinetic energy of motion of rocks. The proposed approach relies within the framework of classic statistical theory. The high-energy phenomena at a nanometer level are generated by self-consistent molecular fields acting on individual particles. The analysis is carried out using the Bogolyubov-Born-Green-Kirkwood-Yvon equations for the particle group distribution functions. We have investigated the number of high-energy phenomena: (1) the emission of atoms and molecules with high energies from the abruptly opened surface of a condensed system; (2) the implosion of convergent streams of high-energy particles, accompanied by a phenomena of their shock dissociation and ionization, with a subsequent formation of partially ionized plasma; and (3) the recombination processes inside a plasma leading to a formation of molecules with high kinetic energies. The initiation of an earthquake occurs due to an abrupt opening of a cavity in the fluid-saturated medium. At certain thermodynamic conditions, the work function of atoms and molecules from the surface of the system may take negative values. As a result, the emission of molecules of fluids from the cavity walls will generate the high-speed streams of molecules. The emitted flux of molecules leads to the phenomena of implosion, impact dissociation, and ionization of the molecules. This plasma state of the medium is sufficient for an explosion. The explosion initiates a self-supporting chain of consequent explosions in a plane of the tectonic fault. As an example, we have considered the Bridgman explosion of serpentinite.</description><identifier>ISSN: 1383-4649</identifier><identifier>EISSN: 1573-157X</identifier><identifier>DOI: 10.1007/s10950-019-09893-4</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Atomic properties ; Atoms &amp; subatomic particles ; Computational fluid dynamics ; Dissociation ; Distribution functions ; Earth and Environmental Science ; Earth Sciences ; Earthquakes ; Emission analysis ; Emissions ; Energy ; Explosions ; Fluids ; Geophysics/Geodesy ; Geotechnical Engineering &amp; Applied Earth Sciences ; Hydrogeology ; Implosions ; Ionization ; Kinetic energy ; Original Article ; Potential energy ; Recombination ; Rivers ; Seismic activity ; Seismology ; Serpentinite ; Streams ; Structural Geology ; Tectonics ; Work functions</subject><ispartof>Journal of seismology, 2020-02, Vol.24 (1), p.133-147</ispartof><rights>Springer Nature B.V. 2019</rights><rights>Journal of Seismology is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a342t-c175dc5d89e464225cc11f3af5bcf8c9b2190cffaf0418b59c8840e5e5180b413</citedby><cites>FETCH-LOGICAL-a342t-c175dc5d89e464225cc11f3af5bcf8c9b2190cffaf0418b59c8840e5e5180b413</cites><orcidid>0000-0002-8841-3250</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10950-019-09893-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10950-019-09893-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Kaim, Sergii D.</creatorcontrib><title>The initial high-energy phenomena of earthquake sources in fluid-saturated environments</title><title>Journal of seismology</title><addtitle>J Seismol</addtitle><description>Experimental data pertaining to weak faults requires construction of microscopic models of the earthquake sources. This study proposes a new high-energy mechanism of transformation of potential energy of strata, saturated with free or bounded fluids, into a kinetic energy of motion of rocks. The proposed approach relies within the framework of classic statistical theory. The high-energy phenomena at a nanometer level are generated by self-consistent molecular fields acting on individual particles. The analysis is carried out using the Bogolyubov-Born-Green-Kirkwood-Yvon equations for the particle group distribution functions. We have investigated the number of high-energy phenomena: (1) the emission of atoms and molecules with high energies from the abruptly opened surface of a condensed system; (2) the implosion of convergent streams of high-energy particles, accompanied by a phenomena of their shock dissociation and ionization, with a subsequent formation of partially ionized plasma; and (3) the recombination processes inside a plasma leading to a formation of molecules with high kinetic energies. The initiation of an earthquake occurs due to an abrupt opening of a cavity in the fluid-saturated medium. At certain thermodynamic conditions, the work function of atoms and molecules from the surface of the system may take negative values. As a result, the emission of molecules of fluids from the cavity walls will generate the high-speed streams of molecules. The emitted flux of molecules leads to the phenomena of implosion, impact dissociation, and ionization of the molecules. This plasma state of the medium is sufficient for an explosion. The explosion initiates a self-supporting chain of consequent explosions in a plane of the tectonic fault. As an example, we have considered the Bridgman explosion of serpentinite.</description><subject>Atomic properties</subject><subject>Atoms &amp; subatomic particles</subject><subject>Computational fluid dynamics</subject><subject>Dissociation</subject><subject>Distribution functions</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Earthquakes</subject><subject>Emission analysis</subject><subject>Emissions</subject><subject>Energy</subject><subject>Explosions</subject><subject>Fluids</subject><subject>Geophysics/Geodesy</subject><subject>Geotechnical Engineering &amp; Applied Earth Sciences</subject><subject>Hydrogeology</subject><subject>Implosions</subject><subject>Ionization</subject><subject>Kinetic energy</subject><subject>Original Article</subject><subject>Potential energy</subject><subject>Recombination</subject><subject>Rivers</subject><subject>Seismic activity</subject><subject>Seismology</subject><subject>Serpentinite</subject><subject>Streams</subject><subject>Structural Geology</subject><subject>Tectonics</subject><subject>Work functions</subject><issn>1383-4649</issn><issn>1573-157X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE9LAzEQxYMoWKtfwFPAczTZJN3kKMV_UPBS0VvIZifdrW22TXaFfntjV_DmZWYY3m_m8RC6ZvSWUVreJUa1pIQyTahWmhNxgiZMlpzk8nGaZ67ycib0ObpIaU3pUTZB78sGcBvavrUb3LSrhkCAuDrgXQOh20KwuPMYbOyb_WA_AaduiA5SZrDfDG1Nku2HaHuoMYSvNnYhQ326RGfebhJc_fYpent8WM6fyeL16WV-vyCWi6InjpWydrJWGrK5opDOMea59bJyXjldFUxT5731VDBVSe2UEhQkSKZoJRifopvx7i52-wFSb9bZYMgvTcHFjEtdcp5VxahysUspgje72G5tPBhGzU-AZgzQ5ADNMRkjMsRHKGVxWEH8O_0P9Q0UInTO</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Kaim, Sergii D.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-8841-3250</orcidid></search><sort><creationdate>20200201</creationdate><title>The initial high-energy phenomena of earthquake sources in fluid-saturated environments</title><author>Kaim, Sergii D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a342t-c175dc5d89e464225cc11f3af5bcf8c9b2190cffaf0418b59c8840e5e5180b413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Atomic properties</topic><topic>Atoms &amp; subatomic particles</topic><topic>Computational fluid dynamics</topic><topic>Dissociation</topic><topic>Distribution functions</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Earthquakes</topic><topic>Emission analysis</topic><topic>Emissions</topic><topic>Energy</topic><topic>Explosions</topic><topic>Fluids</topic><topic>Geophysics/Geodesy</topic><topic>Geotechnical Engineering &amp; Applied Earth Sciences</topic><topic>Hydrogeology</topic><topic>Implosions</topic><topic>Ionization</topic><topic>Kinetic energy</topic><topic>Original Article</topic><topic>Potential energy</topic><topic>Recombination</topic><topic>Rivers</topic><topic>Seismic activity</topic><topic>Seismology</topic><topic>Serpentinite</topic><topic>Streams</topic><topic>Structural Geology</topic><topic>Tectonics</topic><topic>Work functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kaim, Sergii D.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Engineering Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Journal of seismology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaim, Sergii D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The initial high-energy phenomena of earthquake sources in fluid-saturated environments</atitle><jtitle>Journal of seismology</jtitle><stitle>J Seismol</stitle><date>2020-02-01</date><risdate>2020</risdate><volume>24</volume><issue>1</issue><spage>133</spage><epage>147</epage><pages>133-147</pages><issn>1383-4649</issn><eissn>1573-157X</eissn><abstract>Experimental data pertaining to weak faults requires construction of microscopic models of the earthquake sources. This study proposes a new high-energy mechanism of transformation of potential energy of strata, saturated with free or bounded fluids, into a kinetic energy of motion of rocks. The proposed approach relies within the framework of classic statistical theory. The high-energy phenomena at a nanometer level are generated by self-consistent molecular fields acting on individual particles. The analysis is carried out using the Bogolyubov-Born-Green-Kirkwood-Yvon equations for the particle group distribution functions. We have investigated the number of high-energy phenomena: (1) the emission of atoms and molecules with high energies from the abruptly opened surface of a condensed system; (2) the implosion of convergent streams of high-energy particles, accompanied by a phenomena of their shock dissociation and ionization, with a subsequent formation of partially ionized plasma; and (3) the recombination processes inside a plasma leading to a formation of molecules with high kinetic energies. The initiation of an earthquake occurs due to an abrupt opening of a cavity in the fluid-saturated medium. At certain thermodynamic conditions, the work function of atoms and molecules from the surface of the system may take negative values. As a result, the emission of molecules of fluids from the cavity walls will generate the high-speed streams of molecules. The emitted flux of molecules leads to the phenomena of implosion, impact dissociation, and ionization of the molecules. This plasma state of the medium is sufficient for an explosion. The explosion initiates a self-supporting chain of consequent explosions in a plane of the tectonic fault. As an example, we have considered the Bridgman explosion of serpentinite.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10950-019-09893-4</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-8841-3250</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1383-4649
ispartof Journal of seismology, 2020-02, Vol.24 (1), p.133-147
issn 1383-4649
1573-157X
language eng
recordid cdi_proquest_journals_2346359733
source SpringerLink Journals - AutoHoldings
subjects Atomic properties
Atoms & subatomic particles
Computational fluid dynamics
Dissociation
Distribution functions
Earth and Environmental Science
Earth Sciences
Earthquakes
Emission analysis
Emissions
Energy
Explosions
Fluids
Geophysics/Geodesy
Geotechnical Engineering & Applied Earth Sciences
Hydrogeology
Implosions
Ionization
Kinetic energy
Original Article
Potential energy
Recombination
Rivers
Seismic activity
Seismology
Serpentinite
Streams
Structural Geology
Tectonics
Work functions
title The initial high-energy phenomena of earthquake sources in fluid-saturated environments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T20%3A28%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20initial%20high-energy%20phenomena%20of%20earthquake%20sources%20in%20fluid-saturated%20environments&rft.jtitle=Journal%20of%20seismology&rft.au=Kaim,%20Sergii%20D.&rft.date=2020-02-01&rft.volume=24&rft.issue=1&rft.spage=133&rft.epage=147&rft.pages=133-147&rft.issn=1383-4649&rft.eissn=1573-157X&rft_id=info:doi/10.1007/s10950-019-09893-4&rft_dat=%3Cproquest_cross%3E2346359733%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2346359733&rft_id=info:pmid/&rfr_iscdi=true