Effect of pulse-like near-fault ground motions on utility-scale land-based wind turbines

Seismic response of a utility-scale land-based wind turbine to near-fault pulse-like ground motions is presented in this study. The structural model corresponds to the 5-MW prototype developed by National Renewable Energy Laboratory. Response parameters such as tower-top displacement, base shear, an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of earthquake engineering 2020-02, Vol.18 (3), p.953-968
Hauptverfasser: Sigurðsson, G. Ö., Rupakhety, R., Rahimi, S. E., Olafsson, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 968
container_issue 3
container_start_page 953
container_title Bulletin of earthquake engineering
container_volume 18
creator Sigurðsson, G. Ö.
Rupakhety, R.
Rahimi, S. E.
Olafsson, S.
description Seismic response of a utility-scale land-based wind turbine to near-fault pulse-like ground motions is presented in this study. The structural model corresponds to the 5-MW prototype developed by National Renewable Energy Laboratory. Response parameters such as tower-top displacement, base shear, and overturning moment are calculated by time history analysis and response spectral analysis using different estimates of response spectra. The results show that peak ground velocity and the frequency of dominant pulse of the ground motion are critical parameters governing the response, while peak ground acceleration has very weak correlation to response. When the pulse period is in the vicinity of structural period, seismic response is found to be much larger than those imposed by extreme events in design wind loads. Response spectral analysis using the actual spectra obtained from actual ground motions yielded results close to those from time history analysis. The spectral model prescribed in Eurocode8 is found to be inadequate in representing near-fault seismic action on the wind turbine.
doi_str_mv 10.1007/s10518-019-00743-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2346272617</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2346272617</sourcerecordid><originalsourceid>FETCH-LOGICAL-a342t-fcd2f8d3aa196e9ba1bffb158ff969fc61f73e4f10c0ec3486f1d84e125c6c703</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPAczST7Cabo5T6AYIXhd5CNpuUrdtNTbJI_72xFbx5mhl43nfgQega6C1QKu8S0BoaQkGRclacqBM0g1pyAlUtTg87JVLA6hxdpLShlNVS0RlaLb13NuPg8W4akiND_-Hw6Ewk3kxDxusYprHD25D7MCYcRjzlfujzniRrBocHM3akNcl1-KsvYJ5i248uXaIzb0rh1e-co_eH5dviiby8Pj4v7l-I4RXLxNuO-abjxoASTrUGWu9bqBvvlVDeCvCSu8oDtdRZXjXCQ9dUDlhthZWUz9HNsXcXw-fkUtabMMWxvNSMV4JJJkAWih0pG0NK0Xm9i_3WxL0Gqn8M6qNBXQzqg0GtSogfQ6nA49rFv-p_Ut9LAHUP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2346272617</pqid></control><display><type>article</type><title>Effect of pulse-like near-fault ground motions on utility-scale land-based wind turbines</title><source>SpringerLink Journals</source><creator>Sigurðsson, G. Ö. ; Rupakhety, R. ; Rahimi, S. E. ; Olafsson, S.</creator><creatorcontrib>Sigurðsson, G. Ö. ; Rupakhety, R. ; Rahimi, S. E. ; Olafsson, S.</creatorcontrib><description>Seismic response of a utility-scale land-based wind turbine to near-fault pulse-like ground motions is presented in this study. The structural model corresponds to the 5-MW prototype developed by National Renewable Energy Laboratory. Response parameters such as tower-top displacement, base shear, and overturning moment are calculated by time history analysis and response spectral analysis using different estimates of response spectra. The results show that peak ground velocity and the frequency of dominant pulse of the ground motion are critical parameters governing the response, while peak ground acceleration has very weak correlation to response. When the pulse period is in the vicinity of structural period, seismic response is found to be much larger than those imposed by extreme events in design wind loads. Response spectral analysis using the actual spectra obtained from actual ground motions yielded results close to those from time history analysis. The spectral model prescribed in Eurocode8 is found to be inadequate in representing near-fault seismic action on the wind turbine.</description><identifier>ISSN: 1570-761X</identifier><identifier>EISSN: 1573-1456</identifier><identifier>DOI: 10.1007/s10518-019-00743-9</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Acceleration ; Analysis ; Civil Engineering ; Design winds ; Earth and Environmental Science ; Earth Sciences ; Earthquakes ; Engineering ; Environmental Engineering/Biotechnology ; Environmental management ; Geophysics/Geodesy ; Geotechnical Engineering &amp; Applied Earth Sciences ; Ground motion ; Hydrogeology ; Mathematical models ; Original Research ; Parameters ; Prototypes ; Renewable energy ; Renewable resources ; Resource management ; Response spectra ; Seismic response ; Spectra ; Spectral analysis ; Spectrum analysis ; Structural Geology ; Turbine engines ; Turbines ; Wind loads ; Wind power ; Wind turbines</subject><ispartof>Bulletin of earthquake engineering, 2020-02, Vol.18 (3), p.953-968</ispartof><rights>Springer Nature B.V. 2019</rights><rights>Bulletin of Earthquake Engineering is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a342t-fcd2f8d3aa196e9ba1bffb158ff969fc61f73e4f10c0ec3486f1d84e125c6c703</citedby><cites>FETCH-LOGICAL-a342t-fcd2f8d3aa196e9ba1bffb158ff969fc61f73e4f10c0ec3486f1d84e125c6c703</cites><orcidid>0000-0003-3504-3687</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10518-019-00743-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10518-019-00743-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Sigurðsson, G. Ö.</creatorcontrib><creatorcontrib>Rupakhety, R.</creatorcontrib><creatorcontrib>Rahimi, S. E.</creatorcontrib><creatorcontrib>Olafsson, S.</creatorcontrib><title>Effect of pulse-like near-fault ground motions on utility-scale land-based wind turbines</title><title>Bulletin of earthquake engineering</title><addtitle>Bull Earthquake Eng</addtitle><description>Seismic response of a utility-scale land-based wind turbine to near-fault pulse-like ground motions is presented in this study. The structural model corresponds to the 5-MW prototype developed by National Renewable Energy Laboratory. Response parameters such as tower-top displacement, base shear, and overturning moment are calculated by time history analysis and response spectral analysis using different estimates of response spectra. The results show that peak ground velocity and the frequency of dominant pulse of the ground motion are critical parameters governing the response, while peak ground acceleration has very weak correlation to response. When the pulse period is in the vicinity of structural period, seismic response is found to be much larger than those imposed by extreme events in design wind loads. Response spectral analysis using the actual spectra obtained from actual ground motions yielded results close to those from time history analysis. The spectral model prescribed in Eurocode8 is found to be inadequate in representing near-fault seismic action on the wind turbine.</description><subject>Acceleration</subject><subject>Analysis</subject><subject>Civil Engineering</subject><subject>Design winds</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Earthquakes</subject><subject>Engineering</subject><subject>Environmental Engineering/Biotechnology</subject><subject>Environmental management</subject><subject>Geophysics/Geodesy</subject><subject>Geotechnical Engineering &amp; Applied Earth Sciences</subject><subject>Ground motion</subject><subject>Hydrogeology</subject><subject>Mathematical models</subject><subject>Original Research</subject><subject>Parameters</subject><subject>Prototypes</subject><subject>Renewable energy</subject><subject>Renewable resources</subject><subject>Resource management</subject><subject>Response spectra</subject><subject>Seismic response</subject><subject>Spectra</subject><subject>Spectral analysis</subject><subject>Spectrum analysis</subject><subject>Structural Geology</subject><subject>Turbine engines</subject><subject>Turbines</subject><subject>Wind loads</subject><subject>Wind power</subject><subject>Wind turbines</subject><issn>1570-761X</issn><issn>1573-1456</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1LAzEQhoMoWKt_wFPAczST7Cabo5T6AYIXhd5CNpuUrdtNTbJI_72xFbx5mhl43nfgQega6C1QKu8S0BoaQkGRclacqBM0g1pyAlUtTg87JVLA6hxdpLShlNVS0RlaLb13NuPg8W4akiND_-Hw6Ewk3kxDxusYprHD25D7MCYcRjzlfujzniRrBocHM3akNcl1-KsvYJ5i248uXaIzb0rh1e-co_eH5dviiby8Pj4v7l-I4RXLxNuO-abjxoASTrUGWu9bqBvvlVDeCvCSu8oDtdRZXjXCQ9dUDlhthZWUz9HNsXcXw-fkUtabMMWxvNSMV4JJJkAWih0pG0NK0Xm9i_3WxL0Gqn8M6qNBXQzqg0GtSogfQ6nA49rFv-p_Ut9LAHUP</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Sigurðsson, G. Ö.</creator><creator>Rupakhety, R.</creator><creator>Rahimi, S. E.</creator><creator>Olafsson, S.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-3504-3687</orcidid></search><sort><creationdate>20200201</creationdate><title>Effect of pulse-like near-fault ground motions on utility-scale land-based wind turbines</title><author>Sigurðsson, G. Ö. ; Rupakhety, R. ; Rahimi, S. E. ; Olafsson, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a342t-fcd2f8d3aa196e9ba1bffb158ff969fc61f73e4f10c0ec3486f1d84e125c6c703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acceleration</topic><topic>Analysis</topic><topic>Civil Engineering</topic><topic>Design winds</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Earthquakes</topic><topic>Engineering</topic><topic>Environmental Engineering/Biotechnology</topic><topic>Environmental management</topic><topic>Geophysics/Geodesy</topic><topic>Geotechnical Engineering &amp; Applied Earth Sciences</topic><topic>Ground motion</topic><topic>Hydrogeology</topic><topic>Mathematical models</topic><topic>Original Research</topic><topic>Parameters</topic><topic>Prototypes</topic><topic>Renewable energy</topic><topic>Renewable resources</topic><topic>Resource management</topic><topic>Response spectra</topic><topic>Seismic response</topic><topic>Spectra</topic><topic>Spectral analysis</topic><topic>Spectrum analysis</topic><topic>Structural Geology</topic><topic>Turbine engines</topic><topic>Turbines</topic><topic>Wind loads</topic><topic>Wind power</topic><topic>Wind turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sigurðsson, G. Ö.</creatorcontrib><creatorcontrib>Rupakhety, R.</creatorcontrib><creatorcontrib>Rahimi, S. E.</creatorcontrib><creatorcontrib>Olafsson, S.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Bulletin of earthquake engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sigurðsson, G. Ö.</au><au>Rupakhety, R.</au><au>Rahimi, S. E.</au><au>Olafsson, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of pulse-like near-fault ground motions on utility-scale land-based wind turbines</atitle><jtitle>Bulletin of earthquake engineering</jtitle><stitle>Bull Earthquake Eng</stitle><date>2020-02-01</date><risdate>2020</risdate><volume>18</volume><issue>3</issue><spage>953</spage><epage>968</epage><pages>953-968</pages><issn>1570-761X</issn><eissn>1573-1456</eissn><abstract>Seismic response of a utility-scale land-based wind turbine to near-fault pulse-like ground motions is presented in this study. The structural model corresponds to the 5-MW prototype developed by National Renewable Energy Laboratory. Response parameters such as tower-top displacement, base shear, and overturning moment are calculated by time history analysis and response spectral analysis using different estimates of response spectra. The results show that peak ground velocity and the frequency of dominant pulse of the ground motion are critical parameters governing the response, while peak ground acceleration has very weak correlation to response. When the pulse period is in the vicinity of structural period, seismic response is found to be much larger than those imposed by extreme events in design wind loads. Response spectral analysis using the actual spectra obtained from actual ground motions yielded results close to those from time history analysis. The spectral model prescribed in Eurocode8 is found to be inadequate in representing near-fault seismic action on the wind turbine.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10518-019-00743-9</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-3504-3687</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1570-761X
ispartof Bulletin of earthquake engineering, 2020-02, Vol.18 (3), p.953-968
issn 1570-761X
1573-1456
language eng
recordid cdi_proquest_journals_2346272617
source SpringerLink Journals
subjects Acceleration
Analysis
Civil Engineering
Design winds
Earth and Environmental Science
Earth Sciences
Earthquakes
Engineering
Environmental Engineering/Biotechnology
Environmental management
Geophysics/Geodesy
Geotechnical Engineering & Applied Earth Sciences
Ground motion
Hydrogeology
Mathematical models
Original Research
Parameters
Prototypes
Renewable energy
Renewable resources
Resource management
Response spectra
Seismic response
Spectra
Spectral analysis
Spectrum analysis
Structural Geology
Turbine engines
Turbines
Wind loads
Wind power
Wind turbines
title Effect of pulse-like near-fault ground motions on utility-scale land-based wind turbines
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T10%3A23%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20pulse-like%20near-fault%20ground%20motions%20on%20utility-scale%20land-based%20wind%20turbines&rft.jtitle=Bulletin%20of%20earthquake%20engineering&rft.au=Sigur%C3%B0sson,%20G.%20%C3%96.&rft.date=2020-02-01&rft.volume=18&rft.issue=3&rft.spage=953&rft.epage=968&rft.pages=953-968&rft.issn=1570-761X&rft.eissn=1573-1456&rft_id=info:doi/10.1007/s10518-019-00743-9&rft_dat=%3Cproquest_cross%3E2346272617%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2346272617&rft_id=info:pmid/&rfr_iscdi=true