Intraspectrum Discrimination and Interspectrum Correlation Analysis Deep Network for Multispectral Face Recognition
Multispectral images contain rich recognition information since the multispectral camera can reveal information that is not visible to the human eye or to the conventional RGB camera. Due to this characteristic of multispectral images, multispectral face recognition has attracted lots of research in...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on cybernetics 2020-03, Vol.50 (3), p.1009-1022 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1022 |
---|---|
container_issue | 3 |
container_start_page | 1009 |
container_title | IEEE transactions on cybernetics |
container_volume | 50 |
creator | Wu, Fei Jing, Xiao-Yuan Dong, Xiwei Hu, Ruimin Yue, Dong Wang, Lina Ji, Yi-Mu Wang, Ruchuan Chen, Guoliang |
description | Multispectral images contain rich recognition information since the multispectral camera can reveal information that is not visible to the human eye or to the conventional RGB camera. Due to this characteristic of multispectral images, multispectral face recognition has attracted lots of research interest. Although some multispectral face recognition methods have been presented in the last decade, how to fully and effectively explore the intraspectrum discriminant information and the useful interspectrum correlation information in multispectral face images for recognition has not been well studied. To boost the performance of multispectral face recognition, we propose an intraspectrum discrimination and interspectrum correlation analysis deep network (IDICN) approach. Multiple spectra are divided into several spectrum-sets, with each containing a group of spectra within a small spectral range. The IDICN network contains a set of spectrum-set-specific deep convolutional neural networks attempting to extract spectrum-set-specific features, followed by a spectrum pooling layer, whose target is to select a group of spectra with favorable discriminative abilities adaptively. IDICN jointly learns the nonlinear representations of the selected spectra, such that the intraspectrum Fisher loss and the interspectrum discriminant correlation are minimized. Experiments on the well-known Hong Kong Polytechnic University, Carnegie Mellon University, and the University of Western Australia multispectral face datasets demonstrate the superior performance of the proposed approach over several state-of-the-art methods. |
doi_str_mv | 10.1109/TCYB.2018.2876591 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2345512098</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8525134</ieee_id><sourcerecordid>2132736483</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-57302951b6eb5a41804f52f649e4faf49379fa656be82a49da4af6e3dc03b4063</originalsourceid><addsrcrecordid>eNpdkctKAzEUhoMoWrQPIIIE3LhpzX2SZa23ghcQXbgaMtMTmTqd1GQG6dubMrULs0nI-f5DTj6ETikZU0rM1dv043rMCNVjpjMlDd1DA0aVHjGWyf3dWWVHaBjjgqSl05XRh-iIE0G1NnKA4qxpg40rKNvQLfFNFctQLavGtpVvsG3mOAEQdsDUhwB1X500tl7HKuIbgBV-hvbHhy_sfMBPXd1WfcbW-M6WgF-h9J9NtQmeoANn6wjD7X6M3u9u36YPo8eX-9l08jgquTDtSGacMCNpoaCQNj2YCCeZU8KAcNYJwzPjrJKqAM2sMHMrrFPA5yXhhSCKH6PLvu8q-O8OYpsv03hQ17YB38WcUc4yroTmCb34hy58F9J8ieJCSsqI0YmiPVUGH2MAl6_SZ9mwzinJN1LyjZR8IyXfSkmZ823nrljCfJf4U5CAsx6oAGBX1pJJygX_BdYbkZQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2345512098</pqid></control><display><type>article</type><title>Intraspectrum Discrimination and Interspectrum Correlation Analysis Deep Network for Multispectral Face Recognition</title><source>IEEE Electronic Library (IEL)</source><creator>Wu, Fei ; Jing, Xiao-Yuan ; Dong, Xiwei ; Hu, Ruimin ; Yue, Dong ; Wang, Lina ; Ji, Yi-Mu ; Wang, Ruchuan ; Chen, Guoliang</creator><creatorcontrib>Wu, Fei ; Jing, Xiao-Yuan ; Dong, Xiwei ; Hu, Ruimin ; Yue, Dong ; Wang, Lina ; Ji, Yi-Mu ; Wang, Ruchuan ; Chen, Guoliang</creatorcontrib><description>Multispectral images contain rich recognition information since the multispectral camera can reveal information that is not visible to the human eye or to the conventional RGB camera. Due to this characteristic of multispectral images, multispectral face recognition has attracted lots of research interest. Although some multispectral face recognition methods have been presented in the last decade, how to fully and effectively explore the intraspectrum discriminant information and the useful interspectrum correlation information in multispectral face images for recognition has not been well studied. To boost the performance of multispectral face recognition, we propose an intraspectrum discrimination and interspectrum correlation analysis deep network (IDICN) approach. Multiple spectra are divided into several spectrum-sets, with each containing a group of spectra within a small spectral range. The IDICN network contains a set of spectrum-set-specific deep convolutional neural networks attempting to extract spectrum-set-specific features, followed by a spectrum pooling layer, whose target is to select a group of spectra with favorable discriminative abilities adaptively. IDICN jointly learns the nonlinear representations of the selected spectra, such that the intraspectrum Fisher loss and the interspectrum discriminant correlation are minimized. Experiments on the well-known Hong Kong Polytechnic University, Carnegie Mellon University, and the University of Western Australia multispectral face datasets demonstrate the superior performance of the proposed approach over several state-of-the-art methods.</description><identifier>ISSN: 2168-2267</identifier><identifier>EISSN: 2168-2275</identifier><identifier>DOI: 10.1109/TCYB.2018.2876591</identifier><identifier>PMID: 30418895</identifier><identifier>CODEN: ITCEB8</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Artificial neural networks ; Cameras ; Correlation ; Correlation analysis ; Deep convolutional neural networks (DCNNs) ; Discrimination ; Face ; Face recognition ; Facial recognition technology ; Feature extraction ; Focusing ; Image recognition ; intraspectrum discriminant information exploration ; multispectral face recognition ; Object recognition ; Spectra ; spectra selection ; useful interspectrum correlation information exploration</subject><ispartof>IEEE transactions on cybernetics, 2020-03, Vol.50 (3), p.1009-1022</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-57302951b6eb5a41804f52f649e4faf49379fa656be82a49da4af6e3dc03b4063</citedby><cites>FETCH-LOGICAL-c349t-57302951b6eb5a41804f52f649e4faf49379fa656be82a49da4af6e3dc03b4063</cites><orcidid>0000-0001-5498-4947 ; 0000-0001-8085-1312 ; 0000-0002-0290-5757 ; 0000-0002-0392-8475 ; 0000-0001-5013-673X ; 0000-0001-7810-9338</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8525134$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8525134$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30418895$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Fei</creatorcontrib><creatorcontrib>Jing, Xiao-Yuan</creatorcontrib><creatorcontrib>Dong, Xiwei</creatorcontrib><creatorcontrib>Hu, Ruimin</creatorcontrib><creatorcontrib>Yue, Dong</creatorcontrib><creatorcontrib>Wang, Lina</creatorcontrib><creatorcontrib>Ji, Yi-Mu</creatorcontrib><creatorcontrib>Wang, Ruchuan</creatorcontrib><creatorcontrib>Chen, Guoliang</creatorcontrib><title>Intraspectrum Discrimination and Interspectrum Correlation Analysis Deep Network for Multispectral Face Recognition</title><title>IEEE transactions on cybernetics</title><addtitle>TCYB</addtitle><addtitle>IEEE Trans Cybern</addtitle><description>Multispectral images contain rich recognition information since the multispectral camera can reveal information that is not visible to the human eye or to the conventional RGB camera. Due to this characteristic of multispectral images, multispectral face recognition has attracted lots of research interest. Although some multispectral face recognition methods have been presented in the last decade, how to fully and effectively explore the intraspectrum discriminant information and the useful interspectrum correlation information in multispectral face images for recognition has not been well studied. To boost the performance of multispectral face recognition, we propose an intraspectrum discrimination and interspectrum correlation analysis deep network (IDICN) approach. Multiple spectra are divided into several spectrum-sets, with each containing a group of spectra within a small spectral range. The IDICN network contains a set of spectrum-set-specific deep convolutional neural networks attempting to extract spectrum-set-specific features, followed by a spectrum pooling layer, whose target is to select a group of spectra with favorable discriminative abilities adaptively. IDICN jointly learns the nonlinear representations of the selected spectra, such that the intraspectrum Fisher loss and the interspectrum discriminant correlation are minimized. Experiments on the well-known Hong Kong Polytechnic University, Carnegie Mellon University, and the University of Western Australia multispectral face datasets demonstrate the superior performance of the proposed approach over several state-of-the-art methods.</description><subject>Artificial neural networks</subject><subject>Cameras</subject><subject>Correlation</subject><subject>Correlation analysis</subject><subject>Deep convolutional neural networks (DCNNs)</subject><subject>Discrimination</subject><subject>Face</subject><subject>Face recognition</subject><subject>Facial recognition technology</subject><subject>Feature extraction</subject><subject>Focusing</subject><subject>Image recognition</subject><subject>intraspectrum discriminant information exploration</subject><subject>multispectral face recognition</subject><subject>Object recognition</subject><subject>Spectra</subject><subject>spectra selection</subject><subject>useful interspectrum correlation information exploration</subject><issn>2168-2267</issn><issn>2168-2275</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkctKAzEUhoMoWrQPIIIE3LhpzX2SZa23ghcQXbgaMtMTmTqd1GQG6dubMrULs0nI-f5DTj6ETikZU0rM1dv043rMCNVjpjMlDd1DA0aVHjGWyf3dWWVHaBjjgqSl05XRh-iIE0G1NnKA4qxpg40rKNvQLfFNFctQLavGtpVvsG3mOAEQdsDUhwB1X500tl7HKuIbgBV-hvbHhy_sfMBPXd1WfcbW-M6WgF-h9J9NtQmeoANn6wjD7X6M3u9u36YPo8eX-9l08jgquTDtSGacMCNpoaCQNj2YCCeZU8KAcNYJwzPjrJKqAM2sMHMrrFPA5yXhhSCKH6PLvu8q-O8OYpsv03hQ17YB38WcUc4yroTmCb34hy58F9J8ieJCSsqI0YmiPVUGH2MAl6_SZ9mwzinJN1LyjZR8IyXfSkmZ823nrljCfJf4U5CAsx6oAGBX1pJJygX_BdYbkZQ</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Wu, Fei</creator><creator>Jing, Xiao-Yuan</creator><creator>Dong, Xiwei</creator><creator>Hu, Ruimin</creator><creator>Yue, Dong</creator><creator>Wang, Lina</creator><creator>Ji, Yi-Mu</creator><creator>Wang, Ruchuan</creator><creator>Chen, Guoliang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5498-4947</orcidid><orcidid>https://orcid.org/0000-0001-8085-1312</orcidid><orcidid>https://orcid.org/0000-0002-0290-5757</orcidid><orcidid>https://orcid.org/0000-0002-0392-8475</orcidid><orcidid>https://orcid.org/0000-0001-5013-673X</orcidid><orcidid>https://orcid.org/0000-0001-7810-9338</orcidid></search><sort><creationdate>20200301</creationdate><title>Intraspectrum Discrimination and Interspectrum Correlation Analysis Deep Network for Multispectral Face Recognition</title><author>Wu, Fei ; Jing, Xiao-Yuan ; Dong, Xiwei ; Hu, Ruimin ; Yue, Dong ; Wang, Lina ; Ji, Yi-Mu ; Wang, Ruchuan ; Chen, Guoliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-57302951b6eb5a41804f52f649e4faf49379fa656be82a49da4af6e3dc03b4063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial neural networks</topic><topic>Cameras</topic><topic>Correlation</topic><topic>Correlation analysis</topic><topic>Deep convolutional neural networks (DCNNs)</topic><topic>Discrimination</topic><topic>Face</topic><topic>Face recognition</topic><topic>Facial recognition technology</topic><topic>Feature extraction</topic><topic>Focusing</topic><topic>Image recognition</topic><topic>intraspectrum discriminant information exploration</topic><topic>multispectral face recognition</topic><topic>Object recognition</topic><topic>Spectra</topic><topic>spectra selection</topic><topic>useful interspectrum correlation information exploration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Fei</creatorcontrib><creatorcontrib>Jing, Xiao-Yuan</creatorcontrib><creatorcontrib>Dong, Xiwei</creatorcontrib><creatorcontrib>Hu, Ruimin</creatorcontrib><creatorcontrib>Yue, Dong</creatorcontrib><creatorcontrib>Wang, Lina</creatorcontrib><creatorcontrib>Ji, Yi-Mu</creatorcontrib><creatorcontrib>Wang, Ruchuan</creatorcontrib><creatorcontrib>Chen, Guoliang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wu, Fei</au><au>Jing, Xiao-Yuan</au><au>Dong, Xiwei</au><au>Hu, Ruimin</au><au>Yue, Dong</au><au>Wang, Lina</au><au>Ji, Yi-Mu</au><au>Wang, Ruchuan</au><au>Chen, Guoliang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intraspectrum Discrimination and Interspectrum Correlation Analysis Deep Network for Multispectral Face Recognition</atitle><jtitle>IEEE transactions on cybernetics</jtitle><stitle>TCYB</stitle><addtitle>IEEE Trans Cybern</addtitle><date>2020-03-01</date><risdate>2020</risdate><volume>50</volume><issue>3</issue><spage>1009</spage><epage>1022</epage><pages>1009-1022</pages><issn>2168-2267</issn><eissn>2168-2275</eissn><coden>ITCEB8</coden><abstract>Multispectral images contain rich recognition information since the multispectral camera can reveal information that is not visible to the human eye or to the conventional RGB camera. Due to this characteristic of multispectral images, multispectral face recognition has attracted lots of research interest. Although some multispectral face recognition methods have been presented in the last decade, how to fully and effectively explore the intraspectrum discriminant information and the useful interspectrum correlation information in multispectral face images for recognition has not been well studied. To boost the performance of multispectral face recognition, we propose an intraspectrum discrimination and interspectrum correlation analysis deep network (IDICN) approach. Multiple spectra are divided into several spectrum-sets, with each containing a group of spectra within a small spectral range. The IDICN network contains a set of spectrum-set-specific deep convolutional neural networks attempting to extract spectrum-set-specific features, followed by a spectrum pooling layer, whose target is to select a group of spectra with favorable discriminative abilities adaptively. IDICN jointly learns the nonlinear representations of the selected spectra, such that the intraspectrum Fisher loss and the interspectrum discriminant correlation are minimized. Experiments on the well-known Hong Kong Polytechnic University, Carnegie Mellon University, and the University of Western Australia multispectral face datasets demonstrate the superior performance of the proposed approach over several state-of-the-art methods.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>30418895</pmid><doi>10.1109/TCYB.2018.2876591</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-5498-4947</orcidid><orcidid>https://orcid.org/0000-0001-8085-1312</orcidid><orcidid>https://orcid.org/0000-0002-0290-5757</orcidid><orcidid>https://orcid.org/0000-0002-0392-8475</orcidid><orcidid>https://orcid.org/0000-0001-5013-673X</orcidid><orcidid>https://orcid.org/0000-0001-7810-9338</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2168-2267 |
ispartof | IEEE transactions on cybernetics, 2020-03, Vol.50 (3), p.1009-1022 |
issn | 2168-2267 2168-2275 |
language | eng |
recordid | cdi_proquest_journals_2345512098 |
source | IEEE Electronic Library (IEL) |
subjects | Artificial neural networks Cameras Correlation Correlation analysis Deep convolutional neural networks (DCNNs) Discrimination Face Face recognition Facial recognition technology Feature extraction Focusing Image recognition intraspectrum discriminant information exploration multispectral face recognition Object recognition Spectra spectra selection useful interspectrum correlation information exploration |
title | Intraspectrum Discrimination and Interspectrum Correlation Analysis Deep Network for Multispectral Face Recognition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T09%3A33%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intraspectrum%20Discrimination%20and%20Interspectrum%20Correlation%20Analysis%20Deep%20Network%20for%20Multispectral%20Face%20Recognition&rft.jtitle=IEEE%20transactions%20on%20cybernetics&rft.au=Wu,%20Fei&rft.date=2020-03-01&rft.volume=50&rft.issue=3&rft.spage=1009&rft.epage=1022&rft.pages=1009-1022&rft.issn=2168-2267&rft.eissn=2168-2275&rft.coden=ITCEB8&rft_id=info:doi/10.1109/TCYB.2018.2876591&rft_dat=%3Cproquest_RIE%3E2132736483%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2345512098&rft_id=info:pmid/30418895&rft_ieee_id=8525134&rfr_iscdi=true |