Intraspectrum Discrimination and Interspectrum Correlation Analysis Deep Network for Multispectral Face Recognition

Multispectral images contain rich recognition information since the multispectral camera can reveal information that is not visible to the human eye or to the conventional RGB camera. Due to this characteristic of multispectral images, multispectral face recognition has attracted lots of research in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cybernetics 2020-03, Vol.50 (3), p.1009-1022
Hauptverfasser: Wu, Fei, Jing, Xiao-Yuan, Dong, Xiwei, Hu, Ruimin, Yue, Dong, Wang, Lina, Ji, Yi-Mu, Wang, Ruchuan, Chen, Guoliang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1022
container_issue 3
container_start_page 1009
container_title IEEE transactions on cybernetics
container_volume 50
creator Wu, Fei
Jing, Xiao-Yuan
Dong, Xiwei
Hu, Ruimin
Yue, Dong
Wang, Lina
Ji, Yi-Mu
Wang, Ruchuan
Chen, Guoliang
description Multispectral images contain rich recognition information since the multispectral camera can reveal information that is not visible to the human eye or to the conventional RGB camera. Due to this characteristic of multispectral images, multispectral face recognition has attracted lots of research interest. Although some multispectral face recognition methods have been presented in the last decade, how to fully and effectively explore the intraspectrum discriminant information and the useful interspectrum correlation information in multispectral face images for recognition has not been well studied. To boost the performance of multispectral face recognition, we propose an intraspectrum discrimination and interspectrum correlation analysis deep network (IDICN) approach. Multiple spectra are divided into several spectrum-sets, with each containing a group of spectra within a small spectral range. The IDICN network contains a set of spectrum-set-specific deep convolutional neural networks attempting to extract spectrum-set-specific features, followed by a spectrum pooling layer, whose target is to select a group of spectra with favorable discriminative abilities adaptively. IDICN jointly learns the nonlinear representations of the selected spectra, such that the intraspectrum Fisher loss and the interspectrum discriminant correlation are minimized. Experiments on the well-known Hong Kong Polytechnic University, Carnegie Mellon University, and the University of Western Australia multispectral face datasets demonstrate the superior performance of the proposed approach over several state-of-the-art methods.
doi_str_mv 10.1109/TCYB.2018.2876591
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2345512098</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8525134</ieee_id><sourcerecordid>2132736483</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-57302951b6eb5a41804f52f649e4faf49379fa656be82a49da4af6e3dc03b4063</originalsourceid><addsrcrecordid>eNpdkctKAzEUhoMoWrQPIIIE3LhpzX2SZa23ghcQXbgaMtMTmTqd1GQG6dubMrULs0nI-f5DTj6ETikZU0rM1dv043rMCNVjpjMlDd1DA0aVHjGWyf3dWWVHaBjjgqSl05XRh-iIE0G1NnKA4qxpg40rKNvQLfFNFctQLavGtpVvsG3mOAEQdsDUhwB1X500tl7HKuIbgBV-hvbHhy_sfMBPXd1WfcbW-M6WgF-h9J9NtQmeoANn6wjD7X6M3u9u36YPo8eX-9l08jgquTDtSGacMCNpoaCQNj2YCCeZU8KAcNYJwzPjrJKqAM2sMHMrrFPA5yXhhSCKH6PLvu8q-O8OYpsv03hQ17YB38WcUc4yroTmCb34hy58F9J8ieJCSsqI0YmiPVUGH2MAl6_SZ9mwzinJN1LyjZR8IyXfSkmZ823nrljCfJf4U5CAsx6oAGBX1pJJygX_BdYbkZQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2345512098</pqid></control><display><type>article</type><title>Intraspectrum Discrimination and Interspectrum Correlation Analysis Deep Network for Multispectral Face Recognition</title><source>IEEE Electronic Library (IEL)</source><creator>Wu, Fei ; Jing, Xiao-Yuan ; Dong, Xiwei ; Hu, Ruimin ; Yue, Dong ; Wang, Lina ; Ji, Yi-Mu ; Wang, Ruchuan ; Chen, Guoliang</creator><creatorcontrib>Wu, Fei ; Jing, Xiao-Yuan ; Dong, Xiwei ; Hu, Ruimin ; Yue, Dong ; Wang, Lina ; Ji, Yi-Mu ; Wang, Ruchuan ; Chen, Guoliang</creatorcontrib><description>Multispectral images contain rich recognition information since the multispectral camera can reveal information that is not visible to the human eye or to the conventional RGB camera. Due to this characteristic of multispectral images, multispectral face recognition has attracted lots of research interest. Although some multispectral face recognition methods have been presented in the last decade, how to fully and effectively explore the intraspectrum discriminant information and the useful interspectrum correlation information in multispectral face images for recognition has not been well studied. To boost the performance of multispectral face recognition, we propose an intraspectrum discrimination and interspectrum correlation analysis deep network (IDICN) approach. Multiple spectra are divided into several spectrum-sets, with each containing a group of spectra within a small spectral range. The IDICN network contains a set of spectrum-set-specific deep convolutional neural networks attempting to extract spectrum-set-specific features, followed by a spectrum pooling layer, whose target is to select a group of spectra with favorable discriminative abilities adaptively. IDICN jointly learns the nonlinear representations of the selected spectra, such that the intraspectrum Fisher loss and the interspectrum discriminant correlation are minimized. Experiments on the well-known Hong Kong Polytechnic University, Carnegie Mellon University, and the University of Western Australia multispectral face datasets demonstrate the superior performance of the proposed approach over several state-of-the-art methods.</description><identifier>ISSN: 2168-2267</identifier><identifier>EISSN: 2168-2275</identifier><identifier>DOI: 10.1109/TCYB.2018.2876591</identifier><identifier>PMID: 30418895</identifier><identifier>CODEN: ITCEB8</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Artificial neural networks ; Cameras ; Correlation ; Correlation analysis ; Deep convolutional neural networks (DCNNs) ; Discrimination ; Face ; Face recognition ; Facial recognition technology ; Feature extraction ; Focusing ; Image recognition ; intraspectrum discriminant information exploration ; multispectral face recognition ; Object recognition ; Spectra ; spectra selection ; useful interspectrum correlation information exploration</subject><ispartof>IEEE transactions on cybernetics, 2020-03, Vol.50 (3), p.1009-1022</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-57302951b6eb5a41804f52f649e4faf49379fa656be82a49da4af6e3dc03b4063</citedby><cites>FETCH-LOGICAL-c349t-57302951b6eb5a41804f52f649e4faf49379fa656be82a49da4af6e3dc03b4063</cites><orcidid>0000-0001-5498-4947 ; 0000-0001-8085-1312 ; 0000-0002-0290-5757 ; 0000-0002-0392-8475 ; 0000-0001-5013-673X ; 0000-0001-7810-9338</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8525134$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8525134$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30418895$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Fei</creatorcontrib><creatorcontrib>Jing, Xiao-Yuan</creatorcontrib><creatorcontrib>Dong, Xiwei</creatorcontrib><creatorcontrib>Hu, Ruimin</creatorcontrib><creatorcontrib>Yue, Dong</creatorcontrib><creatorcontrib>Wang, Lina</creatorcontrib><creatorcontrib>Ji, Yi-Mu</creatorcontrib><creatorcontrib>Wang, Ruchuan</creatorcontrib><creatorcontrib>Chen, Guoliang</creatorcontrib><title>Intraspectrum Discrimination and Interspectrum Correlation Analysis Deep Network for Multispectral Face Recognition</title><title>IEEE transactions on cybernetics</title><addtitle>TCYB</addtitle><addtitle>IEEE Trans Cybern</addtitle><description>Multispectral images contain rich recognition information since the multispectral camera can reveal information that is not visible to the human eye or to the conventional RGB camera. Due to this characteristic of multispectral images, multispectral face recognition has attracted lots of research interest. Although some multispectral face recognition methods have been presented in the last decade, how to fully and effectively explore the intraspectrum discriminant information and the useful interspectrum correlation information in multispectral face images for recognition has not been well studied. To boost the performance of multispectral face recognition, we propose an intraspectrum discrimination and interspectrum correlation analysis deep network (IDICN) approach. Multiple spectra are divided into several spectrum-sets, with each containing a group of spectra within a small spectral range. The IDICN network contains a set of spectrum-set-specific deep convolutional neural networks attempting to extract spectrum-set-specific features, followed by a spectrum pooling layer, whose target is to select a group of spectra with favorable discriminative abilities adaptively. IDICN jointly learns the nonlinear representations of the selected spectra, such that the intraspectrum Fisher loss and the interspectrum discriminant correlation are minimized. Experiments on the well-known Hong Kong Polytechnic University, Carnegie Mellon University, and the University of Western Australia multispectral face datasets demonstrate the superior performance of the proposed approach over several state-of-the-art methods.</description><subject>Artificial neural networks</subject><subject>Cameras</subject><subject>Correlation</subject><subject>Correlation analysis</subject><subject>Deep convolutional neural networks (DCNNs)</subject><subject>Discrimination</subject><subject>Face</subject><subject>Face recognition</subject><subject>Facial recognition technology</subject><subject>Feature extraction</subject><subject>Focusing</subject><subject>Image recognition</subject><subject>intraspectrum discriminant information exploration</subject><subject>multispectral face recognition</subject><subject>Object recognition</subject><subject>Spectra</subject><subject>spectra selection</subject><subject>useful interspectrum correlation information exploration</subject><issn>2168-2267</issn><issn>2168-2275</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkctKAzEUhoMoWrQPIIIE3LhpzX2SZa23ghcQXbgaMtMTmTqd1GQG6dubMrULs0nI-f5DTj6ETikZU0rM1dv043rMCNVjpjMlDd1DA0aVHjGWyf3dWWVHaBjjgqSl05XRh-iIE0G1NnKA4qxpg40rKNvQLfFNFctQLavGtpVvsG3mOAEQdsDUhwB1X500tl7HKuIbgBV-hvbHhy_sfMBPXd1WfcbW-M6WgF-h9J9NtQmeoANn6wjD7X6M3u9u36YPo8eX-9l08jgquTDtSGacMCNpoaCQNj2YCCeZU8KAcNYJwzPjrJKqAM2sMHMrrFPA5yXhhSCKH6PLvu8q-O8OYpsv03hQ17YB38WcUc4yroTmCb34hy58F9J8ieJCSsqI0YmiPVUGH2MAl6_SZ9mwzinJN1LyjZR8IyXfSkmZ823nrljCfJf4U5CAsx6oAGBX1pJJygX_BdYbkZQ</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Wu, Fei</creator><creator>Jing, Xiao-Yuan</creator><creator>Dong, Xiwei</creator><creator>Hu, Ruimin</creator><creator>Yue, Dong</creator><creator>Wang, Lina</creator><creator>Ji, Yi-Mu</creator><creator>Wang, Ruchuan</creator><creator>Chen, Guoliang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5498-4947</orcidid><orcidid>https://orcid.org/0000-0001-8085-1312</orcidid><orcidid>https://orcid.org/0000-0002-0290-5757</orcidid><orcidid>https://orcid.org/0000-0002-0392-8475</orcidid><orcidid>https://orcid.org/0000-0001-5013-673X</orcidid><orcidid>https://orcid.org/0000-0001-7810-9338</orcidid></search><sort><creationdate>20200301</creationdate><title>Intraspectrum Discrimination and Interspectrum Correlation Analysis Deep Network for Multispectral Face Recognition</title><author>Wu, Fei ; Jing, Xiao-Yuan ; Dong, Xiwei ; Hu, Ruimin ; Yue, Dong ; Wang, Lina ; Ji, Yi-Mu ; Wang, Ruchuan ; Chen, Guoliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-57302951b6eb5a41804f52f649e4faf49379fa656be82a49da4af6e3dc03b4063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial neural networks</topic><topic>Cameras</topic><topic>Correlation</topic><topic>Correlation analysis</topic><topic>Deep convolutional neural networks (DCNNs)</topic><topic>Discrimination</topic><topic>Face</topic><topic>Face recognition</topic><topic>Facial recognition technology</topic><topic>Feature extraction</topic><topic>Focusing</topic><topic>Image recognition</topic><topic>intraspectrum discriminant information exploration</topic><topic>multispectral face recognition</topic><topic>Object recognition</topic><topic>Spectra</topic><topic>spectra selection</topic><topic>useful interspectrum correlation information exploration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Fei</creatorcontrib><creatorcontrib>Jing, Xiao-Yuan</creatorcontrib><creatorcontrib>Dong, Xiwei</creatorcontrib><creatorcontrib>Hu, Ruimin</creatorcontrib><creatorcontrib>Yue, Dong</creatorcontrib><creatorcontrib>Wang, Lina</creatorcontrib><creatorcontrib>Ji, Yi-Mu</creatorcontrib><creatorcontrib>Wang, Ruchuan</creatorcontrib><creatorcontrib>Chen, Guoliang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wu, Fei</au><au>Jing, Xiao-Yuan</au><au>Dong, Xiwei</au><au>Hu, Ruimin</au><au>Yue, Dong</au><au>Wang, Lina</au><au>Ji, Yi-Mu</au><au>Wang, Ruchuan</au><au>Chen, Guoliang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intraspectrum Discrimination and Interspectrum Correlation Analysis Deep Network for Multispectral Face Recognition</atitle><jtitle>IEEE transactions on cybernetics</jtitle><stitle>TCYB</stitle><addtitle>IEEE Trans Cybern</addtitle><date>2020-03-01</date><risdate>2020</risdate><volume>50</volume><issue>3</issue><spage>1009</spage><epage>1022</epage><pages>1009-1022</pages><issn>2168-2267</issn><eissn>2168-2275</eissn><coden>ITCEB8</coden><abstract>Multispectral images contain rich recognition information since the multispectral camera can reveal information that is not visible to the human eye or to the conventional RGB camera. Due to this characteristic of multispectral images, multispectral face recognition has attracted lots of research interest. Although some multispectral face recognition methods have been presented in the last decade, how to fully and effectively explore the intraspectrum discriminant information and the useful interspectrum correlation information in multispectral face images for recognition has not been well studied. To boost the performance of multispectral face recognition, we propose an intraspectrum discrimination and interspectrum correlation analysis deep network (IDICN) approach. Multiple spectra are divided into several spectrum-sets, with each containing a group of spectra within a small spectral range. The IDICN network contains a set of spectrum-set-specific deep convolutional neural networks attempting to extract spectrum-set-specific features, followed by a spectrum pooling layer, whose target is to select a group of spectra with favorable discriminative abilities adaptively. IDICN jointly learns the nonlinear representations of the selected spectra, such that the intraspectrum Fisher loss and the interspectrum discriminant correlation are minimized. Experiments on the well-known Hong Kong Polytechnic University, Carnegie Mellon University, and the University of Western Australia multispectral face datasets demonstrate the superior performance of the proposed approach over several state-of-the-art methods.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>30418895</pmid><doi>10.1109/TCYB.2018.2876591</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-5498-4947</orcidid><orcidid>https://orcid.org/0000-0001-8085-1312</orcidid><orcidid>https://orcid.org/0000-0002-0290-5757</orcidid><orcidid>https://orcid.org/0000-0002-0392-8475</orcidid><orcidid>https://orcid.org/0000-0001-5013-673X</orcidid><orcidid>https://orcid.org/0000-0001-7810-9338</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2168-2267
ispartof IEEE transactions on cybernetics, 2020-03, Vol.50 (3), p.1009-1022
issn 2168-2267
2168-2275
language eng
recordid cdi_proquest_journals_2345512098
source IEEE Electronic Library (IEL)
subjects Artificial neural networks
Cameras
Correlation
Correlation analysis
Deep convolutional neural networks (DCNNs)
Discrimination
Face
Face recognition
Facial recognition technology
Feature extraction
Focusing
Image recognition
intraspectrum discriminant information exploration
multispectral face recognition
Object recognition
Spectra
spectra selection
useful interspectrum correlation information exploration
title Intraspectrum Discrimination and Interspectrum Correlation Analysis Deep Network for Multispectral Face Recognition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T09%3A33%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intraspectrum%20Discrimination%20and%20Interspectrum%20Correlation%20Analysis%20Deep%20Network%20for%20Multispectral%20Face%20Recognition&rft.jtitle=IEEE%20transactions%20on%20cybernetics&rft.au=Wu,%20Fei&rft.date=2020-03-01&rft.volume=50&rft.issue=3&rft.spage=1009&rft.epage=1022&rft.pages=1009-1022&rft.issn=2168-2267&rft.eissn=2168-2275&rft.coden=ITCEB8&rft_id=info:doi/10.1109/TCYB.2018.2876591&rft_dat=%3Cproquest_RIE%3E2132736483%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2345512098&rft_id=info:pmid/30418895&rft_ieee_id=8525134&rfr_iscdi=true